Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Cryogenic sapphire optical reference cavity with crystalline coatings at $\mathrm{ 1 \times 10^{-16}}$ fractional instability (2404.14310v1)

Published 22 Apr 2024 in physics.optics and physics.atom-ph

Abstract: The frequency stability of a laser locked to an optical reference cavity is fundamentally limited by thermal noise in the cavity length. These fluctuations are linked to material dissipation, which depends both on the temperature of the optical components and the material properties. Here, the design and experimental characterization of a sapphire optical cavity operated at 10 K with crystalline coatings at 1069 nm is presented. Theoretical estimates of the thermo-mechanical noise indicate a thermal noise floor below $\mathrm{4.5\times10{-18}}$. Major technical noise contributions including vibrations, temperature fluctuations, and residual amplitude modulation are characterized in detail. The short-term performance is measured via a three-cornered hat analysis with two other cavity-stabilized lasers, yielding a noise floor of $1\times10{-16}$. The long-term performance is measured against an optical lattice clock, indicating cavity stability at the level of $2\times10{-15}$ for averaging times up to 10,000 s.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (11)
  1. M. J. Martin, Quantum metrology and many-body physics: pushing the frontier of the optical lattice clock, Ph.D. thesis, University of Colorado at Boulder (2013).
  2. Y. Levin, Physical Review D 57, 659 (1998), publisher: American Physical Society.
  3. V. B. Braginsky and S. P. Vyatchanin, Physics Letters A 312, 244 (2003).
  4. Boulder Atomic Clock Optical Network B.A.C.O.N Collaboration, Nature 591, 564 (2021).
  5. H. B. Callen and T. A. Welton, Physical Review 83, 34 (1951).
  6. G. D. Cole, in Optical Trapping and Optical Micromanipulation IX, Vol. 8458, edited by K. Dholakia and G. C. Spalding, International Society for Optics and Photonics (SPIE, 2012) p. 845807.
  7. W. J. Riley and D. A. Howe, Handbook of frequency stability analysis (US Department of Commerce, National Institute of Standards and Technology, 2008).
  8. P. S. Gaal, Thermal Conductivity 24/Thermal Expansion 12, Vol. 24 (CRC Press, 1999).
  9. G. Hartwig, Polymer properties at room and cryogenic temperatures (Springer Science & Business Media, 1995).
  10. J. Valencia, Extending Coherence for Atomic Clocks, Ph.D. thesis, University of Colorado at Boulder (2023).
  11. J. Gray and D. Allan, “Proceedings of the 28th annual symposium on frequency control,”  (1974).

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 37 likes.