Supergravity in the Geometric Approach and its Hidden Graded Lie Algebra (2404.13987v2)
Abstract: In this contribution, we present the geometric approach to supergravity. In the first part, we discuss in some detail the peculiarities of the approach and apply the formalism to the case of pure supergravity in four space-time dimensions. In the second part, we extend the discussion to theories in higher dimensions, which include antisymmetric tensors of degree higher than one, focussing on the case of eleven dimensional space-time. Here, we report the formulation first introduced in 1981 by R. D'Auria and P. Fr`e, corresponding to a generalization of a Chevalley-Eilenberg Lie algebra, together with some more recent results, pointing out the relation of the formalism with the mathematical framework of $L_\infty$ algebras.
- M. B. Green, J. H. Schwarz and E. Witten, “SUPERSTRING THEORY. VOL. 1,2; ISBN 978-0-521-35752-4; ISBN 978-0-521-35753-1
- D. Z. Freedman, P. van Nieuwenhuizen and S. Ferrara, “Progress Toward a Theory of Supergravity,” Phys. Rev. D 13 (1976), 3214-3218 doi:10.1103/PhysRevD.13.3214
- S. Deser and B. Zumino, “Consistent Supergravity,” Phys. Lett. B 62 (1976), 335 doi:10.1016/0370-2693(76)90089-7
- Y. Ne’eman and T. Regge, “Gauge Theory of Gravity and Supergravity on a Group Manifold,” Riv. Nuovo Cim. 1N5 (1978) 1, and Phys.Lett. 74B (1978) 54-56;
- L. Castellani, R. D’Auria and P. Fré, “Supergravity and superstrings: A Geometric perspective,” Vol. 1 and 2. Singapore: World Scientific (1991)
- E. Cremmer, B. Julia and J. Scherk, “Supergravity Theory in Eleven-Dimensions,” Phys. Lett. B 76 (1978), 409-412 doi:10.1016/0370-2693(78)90894-8
- R. D’Auria and P. Fré, “Geometric Supergravity in d = 11 and Its Hidden Supergroup,” Nucl. Phys. B 201 (1982) 101 Erratum: [Nucl. Phys. B 206 (1982) 496].
- P. van Nieuwenhuizen, “FREE GRADED DIFFERENTIAL SUPERALGEBRAS,” CERN-TH-3499.
- L. Castellani, P. Fre, F. Giani, K. Pilch and P. van Nieuwenhuizen, “Gauging of d=11𝑑11d=11italic_d = 11 Supergravity?,” Annals Phys. 146 (1983), 35 doi:10.1016/0003-4916(83)90052-0
- D. Fiorenza, H. Sati and U. Schreiber, “Super Lie n-algebra extensions, higher WZW models, and super p-branes with tensor multiplet fields,” Int. J. Geom. Meth. Mod. Phys. 12 (2014), 1550018 doi:10.1142/S0219887815500188 [arXiv:1308.5264 [hep-th]].
- M. F. Sohnius, “Introducing Supersymmetry,” Phys. Rept. 128 (1985), 39-204 doi:10.1016/0370-1573(85)90023-7
- J. Wess and J. Bagger, “Supersymmetry and supergravity,” Princeton University Press, 1992, ISBN 978-0-691-02530-8
- D. Z. Freedman and A. Van Proeyen, “Supergravity,” Cambridge Univ. Press, 2012, ISBN 978-1-139-36806-3, 978-0-521-19401-3 doi:10.1017/CBO9781139026833
- E. Cartan, “Sur les variétés à connexion affine et la théorie de la relativité généralisée. Annales Sci. Ecole Norm. Sup. 40 (1923), 325-412; 41 (1924), 1-25
- R. D’Auria, P. Fre and T. Regge, “Graded Lie Algebra Cohomology and Supergravity,” Riv. Nuovo Cim. 3N12 (1980), 1 doi:10.1007/BF02905929
- E. Cremmer, “Supergravities in 5 Dimensions,” LPTENS-80-17.
- R. D’Auria, E. Maina, T. Regge and P. Fre, “Geometrical First Order Supergravity in Five Space-time Dimensions,” Annals Phys. 135 (1981), 237-269 doi:10.1016/0003-4916(81)90155-X
- A. Salam and E. Sezgin, “SUPERGRAVITIES IN DIVERSE DIMENSIONS. VOL. 1, 2
- A. Ceresole, R. D’Auria, S. Ferrara, W. Lerche and J. Louis, “Picard-Fuchs equations and special geometry,” Int. J. Mod. Phys. A 8 (1993) 79 doi:10.1142/S0217751X93000047 [hep-th/9204035].
- A. Ceresole, R. D’Auria, S. Ferrara, W. Lerche, J. Louis and T. Regge, “Picard-Fuchs equations, special geometry and target space duality,” AMS/IP Stud. Adv. Math. 1 (1996) 281.
- A. Ceresole, R. D’Auria and T. Regge, “Duality group for Calabi-Yau 2 moduli space,” Nucl. Phys. B 414 (1994) 517 doi:10.1016/0550-3213(94)90439-1 [hep-th/9307151].
- A. Ceresole, R. D’Auria, S. Ferrara and A. Van Proeyen, “Duality transformations in supersymmetric Yang-Mills theories coupled to supergravity,” Nucl. Phys. B 444 (1995) 92 doi:10.1016/0550-3213(95)00175-R [hep-th/9502072].
- M. Billò, A. Ceresole, R. D’Auria, S. Ferrara, P. Fré, T. Regge, P. Soriani and A. Van Proeyen, “A Search for nonperturbative dualities of local N=2 Yang-Mills theories from Calabi-Yau threefolds,” Class. Quant. Grav. 13 (1996) 831 doi:10.1088/0264-9381/13/5/007 [hep-th/9506075].
- A. Ceresole, R. D’Auria and S. Ferrara, “The Symplectic structure of N=2 supergravity and its central extension,” Nucl. Phys. Proc. Suppl. 46 (1996) 67 doi:10.1016/0920-5632(96)00008-4 [hep-th/9509160].
- A. C. Cadavid, A. Ceresole, R. D’Auria and S. Ferrara, “Eleven-dimensional supergravity compactified on Calabi-Yau threefolds,” Phys. Lett. B 357 (1995) 76 doi:10.1016/0370-2693(95)00891-N [hep-th/9506144].
- L. Andrianopoli, R. D’Auria and S. Ferrara, “U duality and central charges in various dimensions revisited,” Int. J. Mod. Phys. A 13 (1998) 431 doi:10.1142/S0217751X98000196
- R. D’Auria, S. Ferrara and P. Fré, “Special and quaternionic isometries: General couplings in N=2 supergravity and the scalar potential,” Nucl. Phys. B 359 (1991) 705. doi:10.1016/0550-3213(91)90077-B
- L. Andrianopoli, M. Bertolini, A. Ceresole, R. D’Auria, S. Ferrara, P. Fré and T. Magri, “N=2 supergravity and N=2 superYang-Mills theory on general scalar manifolds: Symplectic covariance, gaugings and the momentum map,” J. Geom. Phys. 23 (1997) 111 doi:10.1016/S0393-0440(97)00002-8 [hep-th/9605032].
- B. de Wit, P. G. Lauwers and A. Van Proeyen, “Lagrangians of N=2 Supergravity - Matter Systems,” Nucl. Phys. B 255 (1985) 569. doi:10.1016/0550-3213(85)90154-3
- M. Trigiante, “Gauged Supergravities,” Phys. Rept. 680 (2017) 1 doi:10.1016/j.physrep.2017.03.001 [arXiv:1609.09745 [hep-th]]
- R. D’Auria, P. Fré and T. Regge, “Consistent Supergravity in Six-dimensions Without Action Invariance,” Phys. Lett. 128B (1983) 44. doi:10.1016/0370-2693(83)90070-9
- L. Castellani and I. Pesando, “The Complete superspace action of chiral D = 10, N=2 supergravity,” Int. J. Mod. Phys. A 8 (1993) 1125.
- L. Andrianopoli, R. D’Auria and L. Ravera, “Hidden Gauge Structure of Supersymmetric Free Differential Algebras,” JHEP 1608 (2016) 095. doi:10.1007/JHEP08(2016)095 [arXiv:1606.07328 [hep-th]].
- J. Stasheff, “Differential graded Lie algebras, quasi-hopf algebras and higher homotopy algebras.,” in: Kulish, P.P. (eds) Quantum Groups. Lecture Notes in Mathematics, vol 1510. Springer, Berlin, Heidelberg. (1992). https://doi.org/10.1007/BFb0101184
- T. Lada and J. Stasheff, “Introduction to SH Lie algebras for physicists,” Int. J. Theor. Phys. 32 (1993), 1087-1104 doi:10.1007/BF00671791 [arXiv:hep-th/9209099 [hep-th]].
- H. Sati and U. Schreiber, “Lie n-algebras of BPS charges,” JHEP 1703 (2017) 087 doi:10.1007/JHEP03(2017)087 [arXiv:1507.08692 [math-ph]].
- H. Sati, U. Schreiber and J. Stasheff, “L∞subscript𝐿L_{\infty}italic_L start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT algebra connections and applications to String- and Chern-Simons n-transport,” doi:10.1007/978-3-7643-8736-5_17 [arXiv:0801.3480 [math.DG]].
- nLab authors, “L-infinity-algebra,” https://ncatlab.org/nlab/show/L-infinity-algebra, Revision 107, March, 2024
- nLab authors, “Chevalley-Eilenberg algebra,” https://ncatlab.org/nlab/show/Chevalley-Eilenberg+algebra, Revision 38, March, 2024
- D. Sullivan, “Infinitesimal computations in topology”. Publications Mathématiques de l’IHES, 47 (1977), p. 269-331
- L. Andrianopoli and R. D’Auria, “N=1 and N=2 pure supergravities on a manifold with boundary,” JHEP 1408 (2014) 012 doi:10.1007/JHEP08(2014)012 [arXiv:1405.2010 [hep-th]].
- L. Andrianopoli and L. Ravera, “On the Geometric Approach to the Boundary Problem in Supergravity,” Universe 7 (2021) no.12, 463 doi:10.3390/universe7120463 [arXiv:2111.01462 [hep-th]].
- nLab authors, “L-infinity-algebra in supergravity,” https://ncatlab.org/nlab/show/L-infinity+algebras+in+physics, April 2024.
- M. Henneaux and C. Teitelboim, “Quantization of gauge systems,” Princeton University Press 1992. ISBN:9780691037691; doi:10.2307/j.ctv10crg0r; 520 pp. (and references therein)
- B. de Wit, H. Samtleben and M. Trigiante, “On Lagrangians and gaugings of maximal supergravities,” Nucl. Phys. B 655 (2003), 93-126 doi:10.1016/S0550-3213(03)00059-2 [arXiv:hep-th/0212239 [hep-th]].
- L. Andrianopoli, R. D’Auria and L. Sommovigo, “D=4, N=2 supergravity in the presence of vector-tensor multiplets and the role of higher p-forms in the framework of free differential algebras,” Adv. Stud. Theor. Phys. 1 (2008), 561-596 [arXiv:0710.3107 [hep-th]].
- I. A. Bandos, J. A. de Azcarraga, J. M. Izquierdo, M. Picon and O. Varela, “On the underlying gauge group structure of D=11 supergravity,” Phys. Lett. B 596 (2004) 145 doi:10.1016/j.physletb.2004.06.079 [hep-th/0406020].
- I. A. Bandos, J. A. de Azcarraga, M. Picon and O. Varela, “On the formulation of D = 11 supergravity and the composite nature of its three-form gauge field,” Annals Phys. 317 (2005) 238 doi:10.1016/j.aop.2004.11.016 [hep-th/0409100].
- L. Andrianopoli, R. D’Auria and L. Ravera, “More on the Hidden Symmetries of 11D Supergravity,” Phys. Lett. B 772 (2017) 578 doi:10.1016/j.physletb.2017.07.016 [arXiv:1705.06251 [hep-th]].
- J. A. de Azcarraga, J. P. Gauntlett, J. M. Izquierdo and P. K. Townsend, “Topological Extensions of the Supersymmetry Algebra for Extended Objects,” Phys. Rev. Lett. 63 (1989) 2443. doi:10.1103/PhysRevLett.63.2443
- E. Sezgin, “The M algebra,” Phys. Lett. B 392 (1997) 323 doi:10.1016/S0370-2693(96)01576-6 [hep-th/9609086].
- P. K. Townsend, “M theory from its superalgebra,” In *Cargese 1997, Strings, branes and dualities* 141-177 [hep-th/9712004].
- M. Hassaine, R. Troncoso and J. Zanelli, “Poincare invariant gravity with local supersymmetry as a gauge theory for the M-algebra,” Phys. Lett. B 596 (2004) 132 doi:10.1016/j.physletb.2004.06.067 [hep-th/0306258].
- M. Hassaine, R. Troncoso and J. Zanelli, “11D supergravity as a gauge theory for the M-algebra,” PoS WC 2004 (2005) 006 [hep-th/0503220].
- E. Witten and D. I. Olive, “Supersymmetry Algebras That Include Topological Charges,” Phys. Lett. B 78 (1978) 97. doi:10.1016/0370-2693(78)90357-X
- A. Achucarro, J. M. Evans, P. K. Townsend and D. L. Wiltshire, “Super p-Branes,” Phys. Lett. B 198 (1987), 441-446 doi:10.1016/0370-2693(87)90896-3
- E. R. C. Abraham and P. K. Townsend, “Intersecting extended objects in supersymmetric field theories,” Nucl. Phys. B 351 (1991) 313. doi:10.1016/0550-3213(91)90093-D
- J. Polchinski, “Dirichlet Branes and Ramond-Ramond charges,” Phys. Rev. Lett. 75 (1995), 4724-4727 doi:10.1103/PhysRevLett.75.4724 [arXiv:hep-th/9510017 [hep-th]].
- C. M. Hull and P. K. Townsend, “Unity of superstring dualities,” Nucl. Phys. B 438 (1995) 109 doi:10.1016/0550-3213(94)00559-W [hep-th/9410167].
- P. K. Townsend, “P-brane democracy,” In *Duff, M.J. (ed.): The world in eleven dimensions* 375-389 [hep-th/9507048].
- J. H. Schwarz, “The power of M theory,” Phys. Lett. B 367 (1996) 97 doi:10.1016/0370-2693(95)01429-2 [hep-th/9510086].
- M. J. Duff, “M theory (The Theory formerly known as strings),” Int. J. Mod. Phys. A 11 (1996) 5623 [Subnucl. Ser. 34 (1997) 324] [Nucl. Phys. Proc. Suppl. 52 (1997) no.1-2, 314] doi:10.1142/S0217751X96002583 [hep-th/9608117].
- P. K. Townsend, “Four lectures on M theory,” In *Trieste 1996, High energy physics and cosmology* 385-438 [hep-th/9612121].
- E. Bergshoeff, E. Sezgin and P. K. Townsend, “Supermembranes and Eleven-Dimensional Supergravity,” Phys. Lett. B 189 (1987) 75. doi:10.1016/0370-2693(87)91272-X
- M. J. Duff, P. S. Howe, T. Inami and K. S. Stelle, “Superstrings in D=10 from Supermembranes in D=11,” Phys. Lett. B 191 (1987) 70. doi:10.1016/0370-2693(87)91323-2
- E. Bergshoeff, E. Sezgin and P. K. Townsend, “Properties of the Eleven-Dimensional Super Membrane Theory,” Annals Phys. 185 (1988) 330. doi:10.1016/0003-4916(88)90050-4
- P. K. Townsend, “The eleven-dimensional supermembrane revisited,” Phys. Lett. B 350 (1995) 184 doi:10.1016/0370-2693(95)00397-4 [hep-th/9501068].
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.