Supergravity in the group-geometric framework: a primer (1802.03407v5)
Abstract: We review the group-geometric approach to supergravity theories, in the perspective of recent developments and applications. Usual diffeomorphisms, gauge symmetries and supersymmetries are unified as superdiffeomorphisms in a supergroup manifold. Integration on supermanifolds is briefly revisited, and used as a tool to provide a bridge between component and superspace actions. As an illustration of the constructive techniques, the cases of $d=3,4$ off-shell supergravities and $d=5$ Chern-Simons supergravity are discussed in detail. A cursory account of $d=10+2$ supergravity is also included. We recall a covariant canonical formalism, well adapted to theories described by Lagrangians $d$-forms, that allows to define a form hamiltonian and to recast constrained hamiltonian systems in a covariant form language. Finally, group geometry and properties of spinors and gamma matrices in $d=s+t$ dimensions are summarized in Appendices.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.