Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Liquid-Graph Time-Constant Network for Multi-Agent Systems Control (2404.13982v3)

Published 22 Apr 2024 in cs.MA

Abstract: In this paper, we propose the Liquid-Graph Time-constant (LGTC) network, a continuous graph neural network(GNN) model for control of multi-agent systems based on therecent Liquid Time Constant (LTC) network. We analyse itsstability leveraging contraction analysis and propose a closed-form model that preserves the model contraction rate and doesnot require solving an ODE at each iteration. Compared todiscrete models like Graph Gated Neural Networks (GGNNs),the higher expressivity of the proposed model guaranteesremarkable performance while reducing the large amountof communicated variables normally required by GNNs. Weevaluate our model on a distributed multi-agent control casestudy (flocking) taking into account variable communicationrange and scalability under non-instantaneous communication

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: