Gain engineering and topological atom laser in synthetic dimensions
Abstract: In the recent rapid progress of quantum technology, controlling quantum states has become an important subject of study. Of particular interest is the control of open quantum systems, where the system of interest couples to the environment in an essential way. One formalism to describe open systems is the non-Hermitian quantum mechanics. Photonics systems have been a major platform to study non-Hermitian quantum mechanics due to its flexibility in engineering gain and loss. Ultracold atomic gases have also used to study non-Hermitian quantum mechanics. However, unlike in photonics, gain is not easily controllable in ultracold atomic gases, and exploration of non-Hermitian physics has been limited to control of losses. In this paper, we report engineering of effective gain through evaporative cooling of judiciously chosen initial thermal atoms. We observe resulting formation of Bose-Einstein condensation (BEC) in excited eigenstates of a synthetic lattice. We realize formation of BEC in a topological edge state of the Su-Schrieffer-Heeger lattice in the synthetic hyperfine lattice, which can be regarded as atomic laser oscillations at a topological edge mode, i.e. topological atom laser. Gain-loss engineering in ultracold atoms opens a novel prospect to explore open many-body quantum systems.
- Acín, A. et al. The quantum technologies roadmap: a european community view. New Journal of Physics 20, 080201 (2018). URL https://iopscience.iop.org/article/10.1088/1367-2630/aad1ea.
- Moiseyev, N. Non-Hermitian quantum mechanics (Cambridge University Press, 2011). URL https://www.cambridge.org/core/books/nonhermitian-quantum-mechanics/134430A6587FF19542FD4A47325BF60E.
- Non-hermitian physics. Advances in Physics 69, 249–435 (2020). URL https://www.tandfonline.com/doi/abs/10.1080/00018732.2021.1876991.
- Gamow, G. Zur quantentheorie des atomkernes. Zeitschrift für Physik 51, 204–212 (1928). URL https://link.springer.com/article/10.1007/BF01343196.
- Real spectra in non-hermitian hamiltonians having 𝒫𝒯𝒫𝒯\mathcal{P}\mathcal{T}caligraphic_P caligraphic_T symmetry. Phys. Rev. Lett. 80, 5243–5246 (1998). URL https://link.aps.org/doi/10.1103/PhysRevLett.80.5243.
- Bender, C. M. Making sense of non-hermitian hamiltonians. Reports on Progress in Physics 70, 947 (2007). URL https://iopscience.iop.org/article/10.1088/0034-4885/70/6/R03.
- Exceptional topology of non-hermitian systems. Rev. Mod. Phys. 93, 015005 (2021). URL https://link.aps.org/doi/10.1103/RevModPhys.93.015005.
- Non-hermitian topological phenomena: A review. Annual Review of Condensed Matter Physics 14, 83–107 (2023).
- St-Jean, P. et al. Lasing in topological edge states of a one-dimensional lattice. Nature Photonics 11, 651–656 (2017). URL https://www.nature.com/articles/s41566-017-0006-2.
- Parto, M. et al. Edge-mode lasing in 1d topological active arrays. Phys. Rev. Lett. 120, 113901 (2018). URL https://link.aps.org/doi/10.1103/PhysRevLett.120.113901.
- Zhao, H. et al. Topological hybrid silicon microlasers. Nature communications 9, 981 (2018). URL https://www.nature.com/articles/s41467-018-03434-2.
- Topological photonic crystal nanocavity laser. Communications Physics 1, 86 (2018). URL https://www.nature.com/articles/s42005-018-0083-7.
- Bahari, B. et al. Nonreciprocal lasing in topological cavities of arbitrary geometries. Science 358, 636–640 (2017). URL https://www.science.org/doi/10.1126/science.aao4551.
- Bandres, M. A. et al. Topological insulator laser: Experiments. Science 359, eaar4005 (2018). URL https://www.science.org/doi/10.1126/science.aar4005.
- Klembt, S. et al. Exciton-polariton topological insulator. Nature 562, 552–556 (2018). URL https://www.nature.com/articles/s41586-018-0601-5.
- Price, H. et al. Roadmap on topological photonics. Journal of Physics: Photonics 4, 032501 (2022). URL https://iopscience.iop.org/article/10.1088/2515-7647/ac4ee4.
- Wave-function approach to dissipative processes in quantum optics. Phys. Rev. Lett. 68, 580–583 (1992). URL https://link.aps.org/doi/10.1103/PhysRevLett.68.580.
- Daley, A. J. Quantum trajectories and open many-body quantum systems. Advances in Physics 63, 77–149 (2014). URL https://www.tandfonline.com/doi/full/10.1080/00018732.2014.933502.
- Heralded magnetism in non-hermitian atomic systems. Phys. Rev. X 4, 041001 (2014). URL https://link.aps.org/doi/10.1103/PhysRevX.4.041001.
- Majorana bound states from exceptional points in non-topological superconductors. Scientific reports 6, 21427 (2016). URL https://www.nature.com/articles/srep21427.
- Kondo effect in a 𝒫𝒯𝒫𝒯\mathcal{PT}caligraphic_P caligraphic_T-symmetric non-hermitian hamiltonian. Phys. Rev. B 98, 085126 (2018). URL https://link.aps.org/doi/10.1103/PhysRevB.98.085126.
- Non-hermitian kondo effect in ultracold alkaline-earth atoms. Phys. Rev. Lett. 121, 203001 (2018). URL https://link.aps.org/doi/10.1103/PhysRevLett.121.203001.
- Theory of superconductivity with non-hermitian and parity-time reversal symmetric cooper pairing symmetry. Phys. Rev. B 97, 014512 (2018). URL https://link.aps.org/doi/10.1103/PhysRevB.97.014512.
- Yamamoto, K. et al. Theory of non-hermitian fermionic superfluidity with a complex-valued interaction. Phys. Rev. Lett. 123, 123601 (2019). URL https://link.aps.org/doi/10.1103/PhysRevLett.123.123601.
- Non-hermitian many-body localization. Phys. Rev. Lett. 123, 090603 (2019). URL https://link.aps.org/doi/10.1103/PhysRevLett.123.090603.
- Non-hermitian fractional quantum hall states. Scientific reports 9, 16895 (2019). URL https://www.nature.com/articles/s41598-019-53253-8.
- Many-body approach to non-hermitian physics in fermionic systems. Phys. Rev. B 101, 121109 (2020). URL https://link.aps.org/doi/10.1103/PhysRevB.101.121109.
- Non-hermitian dynamic strings and anomalous topological degeneracy on a non-hermitian toric-code model with parity-time symmetry. Phys. Rev. B 101, 144439 (2020). URL https://link.aps.org/doi/10.1103/PhysRevB.101.144439.
- Continuous phase transition without gap closing in non-hermitian quantum many-body systems. Phys. Rev. Lett. 125, 260601 (2020). URL https://link.aps.org/doi/10.1103/PhysRevLett.125.260601.
- Non-hermitian topological mott insulators in one-dimensional fermionic superlattices. Phys. Rev. B 102, 235151 (2020). URL https://link.aps.org/doi/10.1103/PhysRevB.102.235151.
- Emergent fermi surface in a many-body non-hermitian fermionic chain. Phys. Rev. B 102, 081115 (2020). URL https://link.aps.org/doi/10.1103/PhysRevB.102.081115.
- Non-hermitian hubbard model without the sign problem. Phys. Rev. B 104, 125102 (2021). URL https://link.aps.org/doi/10.1103/PhysRevB.104.125102.
- Entanglement and purification transitions in non-hermitian quantum mechanics. Phys. Rev. Lett. 126, 170503 (2021). URL https://link.aps.org/doi/10.1103/PhysRevLett.126.170503.
- Beam dynamics in 𝒫𝒯𝒫𝒯\mathcal{P}\mathcal{T}caligraphic_P caligraphic_T symmetric optical lattices. Phys. Rev. Lett. 100, 103904 (2008). URL https://link.aps.org/doi/10.1103/PhysRevLett.100.103904.
- Guo, A. et al. Observation of 𝒫𝒯𝒫𝒯\mathcal{P}\mathcal{T}caligraphic_P caligraphic_T-symmetry breaking in complex optical potentials. Phys. Rev. Lett. 103, 093902 (2009). URL https://link.aps.org/doi/10.1103/PhysRevLett.103.093902.
- Rüter, C. E. et al. Observation of parity–time symmetry in optics. Nature physics 6, 192–195 (2010). URL https://www.nature.com/articles/nphys1515.
- Nonlinear waves in 𝒫𝒯𝒫𝒯\mathcal{PT}caligraphic_P caligraphic_T-symmetric systems. Rev. Mod. Phys. 88, 035002 (2016). URL https://link.aps.org/doi/10.1103/RevModPhys.88.035002.
- Longhi, S. Parity-time symmetry meets photonics: A new twist in non-hermitian optics. Europhysics Letters 120, 64001 (2018). URL https://iopscience.iop.org/article/10.1209/0295-5075/120/64001.
- The dawn of non-hermitian optics. Communications Physics 2, 37 (2019). URL https://www.nature.com/articles/s42005-019-0130-z.
- Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008). URL https://link.aps.org/doi/10.1103/RevModPhys.80.885.
- Quantum simulations with ultracold quantum gases. Nature Physics 8, 267–276 (2012). URL https://www.nature.com/articles/nphys2259.
- Tools for quantum simulation with ultracold atoms in optical lattices. Nature Reviews Physics 2, 411–425 (2020). URL https://www.nature.com/articles/s42254-020-0195-3.
- Takasu, Y. et al. Pt-symmetric non-hermitian quantum many-body system using ultracold atoms in an optical lattice with controlled dissipation. Progress of Theoretical and Experimental Physics 2020, 12A110 (2020). URL https://academic.oup.com/ptep/article/2020/12/12A110/5905047.
- Ren, Z. et al. Chiral control of quantum states in non-hermitian spin–orbit-coupled fermions. Nature Physics 18, 385–389 (2022). URL https://www.nature.com/articles/s41567-021-01491-x.
- Quantum Simulation of an Extra Dimension. Physical Review Letters 108, 133001 (2012). URL https://link.aps.org/doi/10.1103/PhysRevLett.108.133001.
- Celi, A. et al. Synthetic Gauge Fields in Synthetic Dimensions. Physical Review Letters 112, 043001 (2014). URL https://link.aps.org/doi/10.1103/PhysRevLett.112.043001.
- Mancini, M. et al. Observation of chiral edge states with neutral fermions in synthetic Hall ribbons. Science 349, 1510–1513 (2015). URL https://science.sciencemag.org/content/349/6255/1510. Publisher: American Association for the Advancement of Science Section: Report.
- Visualizing edge states with an atomic Bose gas in the quantum Hall regime. Science 349, 1514–1518 (2015). URL https://www.science.org/doi/10.1126/science.aaa8515.
- Topological quantum matter in synthetic dimensions. Nature Reviews Physics 1, 349–357 (2019). URL https://www.nature.com/articles/s42254-019-0045-3. Number: 5 Publisher: Nature Publishing Group.
- Adiabatic population transfer in a three-level system driven by delayed laser pulses. Physical Review A 40, 6741–6744 (1989). URL https://link.aps.org/doi/10.1103/PhysRevA.40.6741.
- Coherent population transfer among quantum states of atoms and molecules. Reviews of Modern Physics 70, 1003–1025 (1998). URL https://link.aps.org/doi/10.1103/RevModPhys.70.1003.
- Electromagnetically induced transparency: Optics in coherent media. Rev. Mod. Phys. 77, 633–673 (2005). URL https://link.aps.org/doi/10.1103/RevModPhys.77.633.
- Degenerate quantum-beat laser: Lasing without inversion and inversion without lasing. Phys. Rev. Lett. 62, 2813–2816 (1989). URL https://link.aps.org/doi/10.1103/PhysRevLett.62.2813.
- Lasing without inversion. Journal of Optics B: Quantum and Semiclassical Optics 2, R7 (2000). URL https://dx.doi.org/10.1088/1464-4266/2/3/201.
- Taie, S. et al. Coherent driving and freezing of bosonic matter wave in an optical lieb lattice. Science Advances 1, e1500854 (2015). URL https://www.science.org/doi/abs/10.1126/sciadv.1500854. eprint https://www.science.org/doi/pdf/10.1126/sciadv.1500854.
- Spatial adiabatic passage of massive quantum particles in an optical Lieb lattice. Nature Communications 11, 257 (2020).
- Atom lasers: Production, properties and prospects for precision inertial measurement. Physics Reports 529, 265–296 (2013). URL https://linkinghub.elsevier.com/retrieve/pii/S037015731300118X.
- Huang, C.-Y. et al. A simple recipe for rapid all-optical formation of spinor Bose-Einstein condensates. Journal of Physics B: Atomic, Molecular and Optical Physics 50, 155302 (2017). URL https://iopscience.iop.org/article/10.1088/1361-6455/aa7980.
- Skulte, J. et al. Condensate Formation in a Dark State of a Driven Atom-Cavity System. Physical Review Letters 130, 163603 (2023). URL https://link.aps.org/doi/10.1103/PhysRevLett.130.163603.
- Solitons in Polyacetylene. Physical Review Letters 42, 1698–1701 (1979). URL https://link.aps.org/doi/10.1103/PhysRevLett.42.1698.
- Merkel, B. et al. Magnetic field stabilization system for atomic physics experiments. Review of Scientific Instruments 90, 044702 (2019). URL https://pubs.aip.org/aip/rsi/article/283219.
- Xu, X.-T. et al. Ultra-low noise magnetic field for quantum gases. Review of Scientific Instruments 90, 054708 (2019). URL https://pubs.aip.org/aip/rsi/article/361080.
- Borkowski, M. et al. Active stabilization of kilogauss magnetic fields to the ppm level for magnetoassociation on ultranarrow Feshbach resonances. Review of Scientific Instruments 94, 073202 (2023). URL https://pubs.aip.org/rsi/article/94/7/073202/2901328/Active-stabilization-of-kilogauss-magnetic-fields.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.