Ergodic and chaotic properties in Tavis-Cummings dimer: quantum and classical limit (2404.13653v1)
Abstract: We investigate two key aspects of quantum systems by using the Tavis-Cummings dimer system as a platform. The first aspect involves unraveling the relationship between the phenomenon of self-trapping (or lack thereof) and integrability (or quantum chaos). Secondly, we uncover {the possibility of} mixed behavior in this quantum system using diagnostics based on random matrix theory and make an in-depth study of classical-quantum correspondence. The setup chosen for the study is precisely suited as it (i) enables a transition from delocalized to self-trapped states and (ii) has a well-defined classical limit, thereby amenable to studies involving classical-quantum conjectures. The obtained classical model in itself has rich chaotic and ergodic properties which were probed via maximal Lyapunov exponents. Furthermore, we present aspects of chaos in the corresponding open quantum system and make connections with non-Hermitian random matrix theory.
- T. Venumadhav, M. Haque, and R. Moessner, Finite-rate quenches of site bias in the bose-hubbard dimer, Phys. Rev. B 81, 054305 (2010).
- I. Guarneri, G. Casati, and V. Karle, Classical dynamical localization, Phys. Rev. Lett. 113, 174101 (2014).
- M. Seclì, M. Capone, and M. Schirò, Signatures of self-trapping in the driven-dissipative bose–hubbard dimer, New Journal of Physics 23, 063056 (2021).
- V. Pouthier, Quantum self-trapping on a star graph, Phys. Rev. E 105, 044304 (2022).
- A. Polkovnikov, S. Sachdev, and S. M. Girvin, Nonequilibrium gross-pitaevskii dynamics of boson lattice models, Phys. Rev. A 66, 053607 (2002).
- M. Trujillo-Martinez, A. Posazhennikova, and J. Kroha, Nonequilibrium josephson oscillations in bose-einstein condensates without dissipation, Phys. Rev. Lett. 103, 105302 (2009).
- A. Dey and M. Kulkarni, Engineering indefinitely long-lived localization in cavity-qed arrays, Phys. Rev. A 101, 043801 (2020).
- M. V. Berry and M. Tabor, Level clustering in the regular spectrum, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 356, 375 (1977).
- O. Bohigas, M. J. Giannoni, and C. Schmit, Characterization of chaotic quantum spectra and universality of level fluctuation laws, Phys. Rev. Lett. 52, 1 (1984).
- M. L. Mehta, Random matrices (Elsevier, 2004).
- F. Haake, Quantum signatures of chaos, in Quantum Coherence in Mesoscopic Systems (Springer, 1991) pp. 583–595.
- P. J. Forrester, Log-gases and random matrices (LMS-34) (Princeton University Press, 2010).
- V. Oganesyan and D. A. Huse, Localization of interacting fermions at high temperature, Physical review b 75, 155111 (2007).
- A. Prakash, J. H. Pixley, and M. Kulkarni, Universal spectral form factor for many-body localization, Phys. Rev. Research 3, L012019 (2021).
- J. Liu, Spectral form factors and late time quantum chaos, Phys. Rev. D 98, 086026 (2018).
- Ángel L Corps, R. A. Molina, and A. Relaño, Chaos in a deformed dicke model, Journal of Physics A: Mathematical and Theoretical 55, 084001 (2022).
- J.-L. Ma, Q. Li, and L. Tan, Ergodic and nonergodic phases in a one-dimensional clean jaynes-cummings-hubbard system with detuning, Phys. Rev. B 105, 165432 (2022).
- G. Nakerst and M. Haque, Chaos in the three-site bose-hubbard model: Classical versus quantum, Phys. Rev. E 107, 024210 (2023).
- A. V. Kirkova and P. A. Ivanov, Quantum chaos and thermalization in the two-mode dicke model, Physica Scripta 98, 045105 (2023).
- C. Emary and T. Brandes, Chaos and the quantum phase transition in the dicke model, Phys. Rev. E 67, 066203 (2003).
- L. F. Santos and M. Rigol, Onset of quantum chaos in one-dimensional bosonic and fermionic systems and its relation to thermalization, Phys. Rev. E 81, 036206 (2010).
- W.-Y. Wang, W.-L. Zhao, and J. Liu, Numerical simulation on many-body quantum chaos of ultracold atoms with synthetic gauge fields, Results in Physics 34, 105222 (2022).
- R. Hamazaki, K. Kawabata, and M. Ueda, Non-hermitian many-body localization, Phys. Rev. Lett. 123, 090603 (2019).
- S. Ghosh, S. Gupta, and M. Kulkarni, Spectral properties of disordered interacting non-hermitian systems, Phys. Rev. B 106, 134202 (2022).
- A. M. García-García, L. Sá, and J. J. M. Verbaarschot, Symmetry classification and universality in non-hermitian many-body quantum chaos by the sachdev-ye-kitaev model, Phys. Rev. X 12, 021040 (2022).
- I. I. Yusipov and M. V. Ivanchenko, Quantum Lyapunov exponents and complex spacing ratios: Two measures of dissipative quantum chaos, Chaos: An Interdisciplinary Journal of Nonlinear Science 32, 043106 (2022), https://pubs.aip.org/aip/cha/article-pdf/doi/10.1063/5.0082046/16452442/043106_1_online.pdf .
- Álvaro Rubio-García, R. A. Molina, and J. Dukelsky, From integrability to chaos in quantum Liouvillians, SciPost Phys. Core 5, 026 (2022).
- L. Sá, P. Ribeiro, and T. Prosen, Complex spacing ratios: A signature of dissipative quantum chaos, Phys. Rev. X 10, 021019 (2020).
- J. Li, T. Prosen, and A. Chan, Spectral statistics of non-hermitian matrices and dissipative quantum chaos, Phys. Rev. Lett. 127, 170602 (2021).
- T. E. Lee and C.-K. Chan, Heralded magnetism in non-hermitian atomic systems, Phys. Rev. X 4, 041001 (2014).
- D. O’Dell, Quantum catastrophes and ergodicity in the dynamics of bosonic josephson junctions, Physical Review Letters 109, 150406 (2012).
- R. Coto, M. Orszag, and V. Eremeev, Self-trapping triggered by losses in cavity qed, Physical Review A 91, 043841 (2015).
- T. Ray, A. Dey, and M. Kulkarni, Localization and delocalization in networks with varied connectivity, Phys. Rev. A 106, 042610 (2022).
- Q. Wang and M. Robnik, Power-law decay of the fraction of the mixed eigenstates in kicked top model with mixed-type classical phase space, Phys. Rev. E 108, 054217 (2023).
- Q. Wang and M. Robnik, Mixed eigenstates in the dicke model: Statistics and power-law decay of the relative proportion in the semiclassical limit, Phys. Rev. E 109, 024225 (2024).
- M. Tavis and F. W. Cummings, Exact solution for an n𝑛nitalic_n-molecule—radiation-field hamiltonian, Phys. Rev. 170, 379 (1968).
- Y.-T. Chuang, M.-W. Lee , and L.-Y. Hsu, Tavis-cummings model revisited: A perspective from macroscopic quantum electrodynamics, Frontiers in Physics 10, 10.3389/fphy.2022.980167 (2022).
- B. Sutherland, Beautiful models: 70 years of exactly solved quantum many-body problems (World Scientific, 2004).
- M. Olshanetsky and A. Perelomov, Quantum integrable systems related to lie algebras, Physics Reports 94, 313 (1983).
- R. Riser, V. A. Osipov, and E. Kanzieper, Nonperturbative theory of power spectrum in complex systems, Annals of Physics 413, 168065 (2020).
- W. H. Press, Numerical recipes 3rd edition: The art of scientific computing (Cambridge university press, 2007).
- Y. Chen, A. Snyder, and D. Payne, Twin core nonlinear couplers with gain and loss, IEEE Journal of Quantum Electronics 28, 239 (1992).
- T. Deguchi, P. K. Ghosh, and K. Kudo, Level statistics of a pseudo-hermitian dicke model, Phys. Rev. E 80, 026213 (2009).
- G. Benettin, L. Galgani, and J.-M. Strelcyn, Kolmogorov entropy and numerical experiments, Phys. Rev. A 14, 2338 (1976).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.