Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

The axially-deformed relativistic quasiparticle random phase approximation based on point-coupling interactions (2404.13266v1)

Published 20 Apr 2024 in nucl-th and nucl-ex

Abstract: Collective nuclear excitations, like giant resonances, are sensitive to nuclear deformation, as evidenced by alterations in their excitation energies and transition strength distributions. A common theoretical framework to study these collective modes, the random-phase approximation (RPA), has to deal with large dimensions spanned by all possible particle-hole configurations satisfying certain symmetries. This work aims to establish a new theoretical framework to study the impact of deformation on spin-isospin excitations, that can provide fast and reliable solutions of the RPA equations. The nuclear ground state is determined with the axially-deformed relativistic Hartree-Bogoliubov (RHB) model based on relativistic point-coupling energy density functionals (EDFs). To study the excitations in the charge-exchange channel, an axially-deformed proton-neutron relativistic quasiparticle RPA (pnRQRPA) is developed in the linear response approach. After benchmarking the axially-deformed pnRQRPA in the spherical limit, a study of spin-isospin excitations including Fermi, Gamow-Teller (GT), and Spin-Dipole (SD) is performed for selected $pf$-shell nuclei. For GT transitions, it is demonstrated that deformation leads to considerable fragmentation of the strength function. A mechanism inducing the fragmentation is studied by decomposing the total strength to different projections of total angular momentum $K$ and constraining the nuclear shape to either spherical, prolate or oblate. A similar fragmentation is also observed for SD transitions, although somewhat moderated by the complex structure of these transitions, while the Fermi strength is almost shape-independent. The axially-deformed pnRQRPA introduced in this work opens perspectives for future studies of deformation effects on astrophysically relevant weak interaction processes, in particular beta decay and electron capture.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. K. Langanke, G. Martínez-Pinedo, and R. G. T. Zegers, Reports on Progress in Physics 84, 066301 (2021).
  2. J. Engel and J. Menéndez, Reports on Progress in Physics 80, 046301 (2017).
  3. X. Roca-Maza and N. Paar, Progress in Particle and Nuclear Physics 101, 96 (2018).
  4. R. Wirth, J. M. Yao, and H. Hergert, Phys. Rev. Lett. 127, 242502 (2021).
  5. M. Bender, P.-H. Heenen, and P.-G. Reinhard, Rev. Mod. Phys. 75, 121 (2003).
  6. T. Nikšić, D. Vretenar, and P. Ring, Progress in Particle and Nuclear Physics 66, 519 (2011).
  7. T. Nikšić, D. Vretenar, and P. Ring, Phys. Rev. C 78, 034318 (2008).
  8. E. Yüksel, T. Marketin, and N. Paar, Phys. Rev. C 99, 034318 (2019).
  9. P. Sarriguren, Phys. Rev. C 91, 044304 (2015).
  10. P. Sarriguren, E. Moya de Guerra, and A. Escuderos, Nuclear Physics A 691, 631 (2001).
  11. F. Šimkovic, L. Pacearescu, and A. Faessler, Nuclear Physics A 733, 321 (2004).
  12. H. Liang, N. Van Giai, and J. Meng, Phys. Rev. Lett. 101, 122502 (2008).
  13. D. Vale, Y. F. Niu, and N. Paar, Phys. Rev. C 103, 064307 (2021).
  14. D. P. Arteaga and P. Ring, Phys. Rev. C 77, 034317 (2008).
  15. K. Yoshida, Progress of Theoretical and Experimental Physics 2013, 113D02 (2013), https://academic.oup.com/ptep/article-pdf/2013/11/113D02/9719090/ptt091.pdf .
  16. K. Yoshida and N. V. Giai, Phys. Rev. C 78, 064316 (2008).
  17. K. Yoshida and T. Nakatsukasa, Phys. Rev. C 83, 021304 (2011).
  18. T. Nakatsukasa, T. Inakura, and K. Yabana, Phys. Rev. C 76, 024318 (2007).
  19. P. Avogadro and T. Nakatsukasa, Phys. Rev. C 84, 014314 (2011).
  20. M. T. Mustonen and J. Engel, Phys. Rev. C 93, 014304 (2016).
  21. A. Bjelčić and T. Nikšić, Computer Physics Communications 253, 107184 (2020).
  22. H. Kucharek and P. Ring, Zeitschrift für Physik A Hadrons and Nuclei 339, 23 (1991).
  23. P. Ring and P. Schuck, The nuclear many-body problem (Springer Science & Business Media, 2004).
  24. S. Péru and H. Goutte, Phys. Rev. C 77, 044313 (2008).
  25. I. Daoutidis and P. Ring, Phys. Rev. C 83, 044303 (2011).
  26. Y. Gambhir, P. Ring, and A. Thimet, Annals of Physics 198, 132 (1990).
  27. Y. Tian, Z.-y. Ma, and P. Ring, Phys. Rev. C 80, 024313 (2009).
  28. M. Moshinsky, Nuclear Physics 13, 104 (1959).
  29. N. Popara, A. Ravlić, and N. Paar, Phys. Rev. C 105, 064315 (2022).
  30. T. Marketin, L. Huther, and G. Martínez-Pinedo, Phys. Rev. C 93, 025805 (2016).
  31. C. Robin and E. Litvinova, The European Physical Journal A 52, 205 (2016).
  32. E. Litvinova, C. Robin, and H. Wibowo, Physics Letters B 800, 135134 (2020).
  33. T. Oishi, A. Ravlić, and N. Paar, Phys. Rev. C 105, 064309 (2022).
  34. H. D. Zeh, Zeitschrift für Physik 202, 38 (1967).
  35. G. Colò, U. Garg, and H. Sagawa, The European Physical Journal A 50, 26 (2014).
  36. K. Yoshida, Phys. Rev. C 102, 054336 (2020).
  37. H. Behrens and W. Bühring, Nuclear Physics A 162, 111 (1971).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.