The axially-deformed relativistic quasiparticle random phase approximation based on point-coupling interactions (2404.13266v1)
Abstract: Collective nuclear excitations, like giant resonances, are sensitive to nuclear deformation, as evidenced by alterations in their excitation energies and transition strength distributions. A common theoretical framework to study these collective modes, the random-phase approximation (RPA), has to deal with large dimensions spanned by all possible particle-hole configurations satisfying certain symmetries. This work aims to establish a new theoretical framework to study the impact of deformation on spin-isospin excitations, that can provide fast and reliable solutions of the RPA equations. The nuclear ground state is determined with the axially-deformed relativistic Hartree-Bogoliubov (RHB) model based on relativistic point-coupling energy density functionals (EDFs). To study the excitations in the charge-exchange channel, an axially-deformed proton-neutron relativistic quasiparticle RPA (pnRQRPA) is developed in the linear response approach. After benchmarking the axially-deformed pnRQRPA in the spherical limit, a study of spin-isospin excitations including Fermi, Gamow-Teller (GT), and Spin-Dipole (SD) is performed for selected $pf$-shell nuclei. For GT transitions, it is demonstrated that deformation leads to considerable fragmentation of the strength function. A mechanism inducing the fragmentation is studied by decomposing the total strength to different projections of total angular momentum $K$ and constraining the nuclear shape to either spherical, prolate or oblate. A similar fragmentation is also observed for SD transitions, although somewhat moderated by the complex structure of these transitions, while the Fermi strength is almost shape-independent. The axially-deformed pnRQRPA introduced in this work opens perspectives for future studies of deformation effects on astrophysically relevant weak interaction processes, in particular beta decay and electron capture.
- K. Langanke, G. Martínez-Pinedo, and R. G. T. Zegers, Reports on Progress in Physics 84, 066301 (2021).
- J. Engel and J. Menéndez, Reports on Progress in Physics 80, 046301 (2017).
- X. Roca-Maza and N. Paar, Progress in Particle and Nuclear Physics 101, 96 (2018).
- R. Wirth, J. M. Yao, and H. Hergert, Phys. Rev. Lett. 127, 242502 (2021).
- M. Bender, P.-H. Heenen, and P.-G. Reinhard, Rev. Mod. Phys. 75, 121 (2003).
- T. Nikšić, D. Vretenar, and P. Ring, Progress in Particle and Nuclear Physics 66, 519 (2011).
- T. Nikšić, D. Vretenar, and P. Ring, Phys. Rev. C 78, 034318 (2008).
- E. Yüksel, T. Marketin, and N. Paar, Phys. Rev. C 99, 034318 (2019).
- P. Sarriguren, Phys. Rev. C 91, 044304 (2015).
- P. Sarriguren, E. Moya de Guerra, and A. Escuderos, Nuclear Physics A 691, 631 (2001).
- F. Šimkovic, L. Pacearescu, and A. Faessler, Nuclear Physics A 733, 321 (2004).
- H. Liang, N. Van Giai, and J. Meng, Phys. Rev. Lett. 101, 122502 (2008).
- D. Vale, Y. F. Niu, and N. Paar, Phys. Rev. C 103, 064307 (2021).
- D. P. Arteaga and P. Ring, Phys. Rev. C 77, 034317 (2008).
- K. Yoshida, Progress of Theoretical and Experimental Physics 2013, 113D02 (2013), https://academic.oup.com/ptep/article-pdf/2013/11/113D02/9719090/ptt091.pdf .
- K. Yoshida and N. V. Giai, Phys. Rev. C 78, 064316 (2008).
- K. Yoshida and T. Nakatsukasa, Phys. Rev. C 83, 021304 (2011).
- T. Nakatsukasa, T. Inakura, and K. Yabana, Phys. Rev. C 76, 024318 (2007).
- P. Avogadro and T. Nakatsukasa, Phys. Rev. C 84, 014314 (2011).
- M. T. Mustonen and J. Engel, Phys. Rev. C 93, 014304 (2016).
- A. Bjelčić and T. Nikšić, Computer Physics Communications 253, 107184 (2020).
- H. Kucharek and P. Ring, Zeitschrift für Physik A Hadrons and Nuclei 339, 23 (1991).
- P. Ring and P. Schuck, The nuclear many-body problem (Springer Science & Business Media, 2004).
- S. Péru and H. Goutte, Phys. Rev. C 77, 044313 (2008).
- I. Daoutidis and P. Ring, Phys. Rev. C 83, 044303 (2011).
- Y. Gambhir, P. Ring, and A. Thimet, Annals of Physics 198, 132 (1990).
- Y. Tian, Z.-y. Ma, and P. Ring, Phys. Rev. C 80, 024313 (2009).
- M. Moshinsky, Nuclear Physics 13, 104 (1959).
- N. Popara, A. Ravlić, and N. Paar, Phys. Rev. C 105, 064315 (2022).
- T. Marketin, L. Huther, and G. Martínez-Pinedo, Phys. Rev. C 93, 025805 (2016).
- C. Robin and E. Litvinova, The European Physical Journal A 52, 205 (2016).
- E. Litvinova, C. Robin, and H. Wibowo, Physics Letters B 800, 135134 (2020).
- T. Oishi, A. Ravlić, and N. Paar, Phys. Rev. C 105, 064309 (2022).
- H. D. Zeh, Zeitschrift für Physik 202, 38 (1967).
- G. Colò, U. Garg, and H. Sagawa, The European Physical Journal A 50, 26 (2014).
- K. Yoshida, Phys. Rev. C 102, 054336 (2020).
- H. Behrens and W. Bühring, Nuclear Physics A 162, 111 (1971).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.