Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distributed Model Predictive Control for Heterogeneous Platoons with Affine Spacing Policies and Arbitrary Communication Topologies (2404.12441v2)

Published 18 Apr 2024 in cs.MA, cs.RO, cs.SY, eess.SY, and math.OC

Abstract: This paper presents a distributed model predictive control (DMPC) algorithm for a heterogeneous platoon using arbitrary communication topologies, provided each vehicle can communicate with a preceding vehicle in the platoon. The proposed DMPC algorithm can accommodate any spacing policy that is affine in a vehicle's velocity, which includes constant distance or constant time headway spacing policies. By analyzing the total cost for the entire platoon, a sufficient condition is derived to ensure platoon asymptotic stability. Simulation experiments with a platoon of 50 vehicles and hardware experiments with a platoon of four 1/10th-scale vehicles validate the algorithm and compare performance under different spacing policies and communication topologies.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. J. Axelsson, “Safety in vehicle platooning: A systematic literature review,” IEEE Trans. Intell. Transport. Syst., vol. 18, no. 5, pp. 1033–1045, 2017.
  2. K.-Y. Liang, J. Mårtensson, and K. H. Johansson, “Heavy-duty vehicle platoon formation for fuel efficiency,” IEEE Trans. Intell. Transport. Syst., vol. 17, no. 4, pp. 1051–1061, 2016.
  3. S. W. Smith, Y. Kim, J. Guanetti, R. Li, R. Firoozi, B. Wootton, A. A. Kurzhanskiy, F. Borrelli, R. Horowitz, and M. Arcak, “Improving urban traffic throughput with vehicle platooning: Theory and experiments,” IEEE Access, vol. 8, pp. 141 208–141 223, 2020.
  4. S. Shladover, C. Desoer, J. Hedrick, M. Tomizuka, J. Walrand, W.-B. Zhang, D. McMahon, H. Peng, S. Sheikholeslam, and N. McKeown, “Automated vehicle control developments in the PATH program,” IEEE Trans. Veh. Technol., vol. 40, no. 1, pp. 114–130, 1991.
  5. T. Robinson, E. Chan, and E. Coelingh, “Operating platoons on public motorways: An introduction to the SARTRE platooning programme,” in 17th World Congress on Intelligent Transport Systems, vol. 1, 2010, p. 12.
  6. S. Tsugawa, S. Kato, and K. Aoki, “An automated truck platoon for energy saving,” in 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2011, pp. 4109–4114.
  7. J. Ploeg, S. Shladover, H. Nijmeijer, and N. van de Wouw, “Introduction to the special issue on the 2011 grand cooperative driving challenge,” IEEE Trans. Intell. Transport. Syst., vol. 13, no. 3, pp. 989–993, 2012.
  8. C. Englund, L. Chen, J. Ploeg, E. Semsar-Kazerooni, A. Voronov, H. H. Bengtsson, and J. Didoff, “The grand cooperative driving challenge 2016: boosting the introduction of cooperative automated vehicles,” IEEE Wireless Communications, vol. 23, no. 4, pp. 146–152, 2016.
  9. S. E. Li, Y. Zheng, K. Li, and J. Wang, “An overview of vehicular platoon control under the four-component framework,” in 2015 IEEE Intelligent Vehicles Symposium (IV), 2015, pp. 286–291.
  10. P. Seiler, A. Pant, and K. Hedrick, “Disturbance propagation in vehicle strings,” IEEE Trans. Automat. Contr., vol. 49, no. 10, pp. 1835–1842, 2004.
  11. D. Swaroop and J. Hedrick, “String stability of interconnected systems,” IEEE Trans. Automat. Contr., vol. 41, no. 3, pp. 349–357, 1996.
  12. G. J. L. Naus, R. P. A. Vugts, J. Ploeg, M. J. G. van de Molengraft, and M. Steinbuch, “String-stable cacc design and experimental validation: A frequency-domain approach,” IEEE Trans. Veh. Technol., vol. 59, no. 9, pp. 4268–4279, 2010.
  13. W. Levine and M. Athans, “On the optimal error regulation of a string of moving vehicles,” IEEE Trans. Automat. Contr., vol. 11, no. 3, pp. 355–361, 1966.
  14. H. Hao and P. Barooah, “Stability and robustness of large platoons of vehicles with double-integrator models and nearest neighbor interaction,” International Journal of Robust and Nonlinear Control, vol. 23, no. 18, pp. 2097–2122, 2013.
  15. Y. Zheng, S. Eben Li, J. Wang, D. Cao, and K. Li, “Stability and scalability of homogeneous vehicular platoon: Study on the influence of information flow topologies,” IEEE Trans. Intell. Transport. Syst., vol. 17, no. 1, pp. 14–26, 2016.
  16. E. Camponogara, D. Jia, B. Krogh, and S. Talukdar, “Distributed model predictive control,” IEEE Control Systems Magazine, vol. 22, no. 1, pp. 44–52, 2002.
  17. A. Venkat, J. Rawlings, and S. Wright, “Stability and optimality of distributed model predictive control,” in Proceedings of the 44th IEEE Conference on Decision and Control, 2005, pp. 6680–6685.
  18. W. B. Dunbar, “Distributed receding horizon control of dynamically coupled nonlinear systems,” IEEE Trans. Automat. Contr., vol. 52, no. 7, pp. 1249–1263, 2007.
  19. Y. Kuwata, A. Richards, T. Schouwenaars, and J. P. How, “Distributed robust receding horizon control for multivehicle guidance,” IEEE Trans. Contr. Syst. Technol., vol. 15, no. 4, pp. 627–641, 2007.
  20. W. B. Dunbar and R. M. Murray, “Distributed receding horizon control for multi-vehicle formation stabilization,” Automatica, vol. 42, no. 4, pp. 549–558, 2006.
  21. W. B. Dunbar and D. S. Caveney, “Distributed receding horizon control of vehicle platoons: Stability and string stability,” IEEE Trans. Automat. Contr., vol. 57, no. 3, pp. 620–633, 2012.
  22. Y. Zheng, S. E. Li, K. Li, F. Borrelli, and J. K. Hedrick, “Distributed model predictive control for heterogeneous vehicle platoons under unidirectional topologies,” IEEE Trans. Contr. Syst. Technol., vol. 25, no. 3, pp. 899–910, 2017.
  23. M. H. Shaham, R. Ranjan, E. Kirda, and T. Padir, “Design and realization of a benchmarking testbed for evaluating autonomous platooning algorithms,” in 2023 International Symposium on Experimental Robotics.   Springer International Publishing, 2024.
  24. Z. Qiang, L. Dai, B. Chen, K. Li, and Y. Xia, “Distributed model predictive control for heterogeneous vehicle platoon with unknown input of leading vehicle,” Transportation Research Part C: Emerging Technologies, vol. 155, p. 104312, 2023.
  25. J. Wang, X. Li, J. H. Park, and G. Guo, “Distributed mpc-based string stable platoon control of networked vehicle systems,” IEEE Trans. Intell. Transport. Syst., vol. 24, no. 3, pp. 3078–3090, 2023.
  26. M. O’Kelly, H. Zheng, D. Karthik, and R. Mangharam, “F1tenth: An open-source evaluation environment for continuous control and reinforcement learning,” in Proceedings of the NeurIPS 2019 Competition and Demonstration Track, ser. Proceedings of Machine Learning Research, H. J. Escalante and R. Hadsell, Eds., vol. 123.   PMLR, 08–14 Dec 2020, pp. 77–89.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com