Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving the Design of Linear Controllers for Homogeneous Platooning under Disturbances (2312.14897v1)

Published 22 Dec 2023 in eess.SY and cs.SY

Abstract: This paper addresses the problem of longitudinal platooning control of homogeneous vehicles subject to external disturbances, such as wind gusts, road slopes, and parametric uncertainties. Our control objective is to maintain the relative distance of the cars regarding their nearby teammates in a decentralized manner. Therefore, we proposed a novel control law to compute the acceleration commands of each vehicle that includes the integral of the spacing error, which endows the controller with the capability to mitigate external disturbances in steady-state conditions. We adopt a constant distance spacing policy and employ generalized look-ahead and bidirectional network topologies. We provide formal conditions for the controller synthesis that ensure the internal stability of the platoon under the proposed control law in the presence of constant and bounded disturbances affecting multiple vehicles. Experiments considering nonlinear vehicle models in the high-fidelity CARLA simulator environment under different disturbances, parametric uncertainties, and several network topologies demonstrate the effectiveness of our approach.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. F. Gao, S. E. Li, Y. Zheng, and D. Kum, “Robust control of heterogeneous vehicular platoon with uncertain dynamics and communication delay,” IET Intelligent Transport Systems, vol. 10, no. 7, pp. 503–513, sep 2016.
  2. K. Boriboonsomsin and M. Barth, “Impacts of road grade on fuel consumption and carbon dioxide emissions evidenced by use of advanced navigation systems,” Transportation Research Record, vol. 2139, no. 1, pp. 21–30, 2009.
  3. B. Ciuffo, K. Mattas, M. Makridis, G. Albano, A. Anesiadou, Y. He, S. Josvai, D. Komnos, M. Pataki, S. Vass et al., “Requiem on the positive effects of commercial adaptive cruise control on motorway traffic and recommendations for future automated driving systems,” Transportation Research Part C: Emerging Technologies, vol. 130, p. 103305, 2021.
  4. J. Zhang and H. Jin, “Optimized calculation of the economic speed profile for slope driving: Based on iterative dynamic programming,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 4, pp. 3313–3323, 2020.
  5. P. Seiler, A. Pant, and K. Hedrick, “Disturbance Propagation in Vehicle Strings,” IEEE Transactions on Automatic Control, vol. 49, no. 10, pp. 1835–1841, oct 2004.
  6. Y. Zheng, S. E. Li, J. Wang, D. Cao, and K. Li, “Stability and Scalability of Homogeneous Vehicular Platoon: Study on the Influence of Information Flow Topologies,” IEEE Trans. Intell. Transp. Syst., no. 1, pp. 14–26, 2016.
  7. Y. Zheng, S. E. Li, K. Li, and W. Ren, “Platooning of Connected Vehicles With Undirected Topologies: Robustness Analysis and Distributed H-infinity Controller Synthesis,” IEEE Trans. Intell. Transp. Syst., vol. 19, pp. 1353–1364, 2018.
  8. Y. Li, Q. Lv, H. Zhu, H. Li, H. Li, S. Hu, S. Yu, and Y. Wang, “Variable Time Headway Policy Based Platoon Control for Heterogeneous Connected Vehicles With External Disturbances,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 11, pp. 21 190–21 200, nov 2022.
  9. Y. Zhao, Z. Liu, and W. S. Wong, “Resilient Platoon Control of Vehicular Cyber Physical Systems Under DoS Attacks and Multiple Disturbances,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 8, pp. 10 945–10 956, 2022.
  10. F. O. Souza, L. A. B. Torres, L. A. Mozelli, and A. A. Neto, “Stability and Formation Error of Homogeneous Vehicular Platoons with Communication Time Delays,” IEEE Trans. Intell. Transp. Syst., vol. 21, no. 10, pp. 4338–4349, oct 2020.
  11. A. A. Neto, L. A. Mozelli, and F. O. Souza, “Control of air-ground convoy subject to communication time delay,” Computers & Electrical Engineering, vol. 76, pp. 213–224, jun 2019.
  12. D. A. Godinho, A. A. Neto, L. A. Mozelli, and F. O. Souza, “Control and Reorganization of Heterogeneous Vehicle Platoons after Vehicle Exits and Entrances,” International Journal of Control, Automation and Systems, 2022.
  13. ——, “A Strategy for Traffic Safety of Vehicular Platoons Under Connection Loss and Time-Delay,” IEEE Trans. Intell. Transp. Syst., vol. 24, no. 6, pp. 6627–6638, jun 2023.
  14. J.-W. Kwon and D. Chwa, “Adaptive Bidirectional Platoon Control Using a Coupled Sliding Mode Control Method,” IEEE Trans. Intell. Transp. Syst., vol. 15, pp. 2040–2048, 2014.
  15. Y. Zhu, Y. Li, H. Zhu, W. Hua, G. Huang, S. Yu, S. E. Li, and X. Gao, “Joint sliding-mode controller and observer for vehicle platoon subject to disturbance and acceleration failure of neighboring vehicles,” IEEE Trans. Intell. Transp. Syst., vol. 2139, pp. 2345–2357, 2023.
  16. X. Hu, L. Xie, L. Xie, S. Lu, W. Xu, and H. Su, “Distributed model predictive control for vehicle platoon with mixed disturbances and model uncertainties,” IEEE Trans. Intell. Transp. Syst., vol. 23, pp. 17 354–17 365, 2022.
  17. J. Zhou, D. Tian, Z. Sheng, X. Duan, G. Qu, D. Zhao, D. Cao, and X. Shen, “Robust min-max model predictive vehicle platooning with causal disturbance feedback,” IEEE Trans. Intell. Transp. Syst., vol. 23, pp. 15 878–15 897, 2022.
  18. C. Zhai, F. Luo, Y. Liu, and Z. Chen, “Ecological cooperative look-ahead control for automated vehicles travelling on freeways with varying slopes,” IEEE Transactions on Vehicular Technology, vol. 68, no. 2, pp. 1208–1221, 2018.
  19. C. Zhai, F. Luo, and Y. Liu, “Cooperative power split optimization for a group of intelligent electric vehicles travelling on a highway with varying slopes,” IEEE Trans. Intell. Transp. Syst., vol. 23, pp. 4993–5005, 2022.
  20. G. Na, G. Park, V. Turri, K. H. Johansson, H. Shim, and Y. Eun, “Disturbance observer approach for fuel-efficient heavy-duty vehicle platooning,” Vehicle System Dynamics, vol. 58, no. 5, pp. 748–767, 2019.
  21. F. Gao, X. Hu, S. E. Li, K. Li, and Q. Sun, “Distributed Adaptive Sliding Mode Control of Vehicular Platoon With Uncertain Interaction Topology,” IEEE Transactions on Industrial Electronics, vol. 65, no. 8, pp. 6352–6361, Aug. 2018.
  22. Y. Zheng, Y. Bian, S. Li, and S. E. Li, “Cooperative Control of Heterogeneous Connected Vehicles with Directed Acyclic Interactions,” IEEE Intelligent Transportation Systems Magazine, vol. 13, no. 2, pp. 127–141, 2021.
  23. P. N. Shivakumar and K. H. Chew, “A sufficient condition for nonvanishing of determinants,” Proceedings of the American mathematical society, pp. 63–66, 1974.
  24. R. Olfati-Saber and R. M. Murray, “Consensus Problems in Networks of Agents With Switching Topology and Time-Delays,” IEEE Transactions on Automatic Control, vol. 49, no. 9, pp. 1520–1533, sep 2004.
  25. A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “CARLA: An open urban driving simulator,” in Conference on robot learning, 2017, pp. 1–16. [Online]. Available: https://proceedings.mlr.press/v78/dosovitskiy17a.html
  26. M. W. Hancock and B. Wright, “A policy on geometric design of highways and streets,” American Association of State Highway and Transportation Officials: Washington, DC, USA, vol. 3, 2013.

Summary

We haven't generated a summary for this paper yet.