Transport of orbital currents in systems with strong intervalley coupling: the case of Kekulé distorted graphene (2404.12072v1)
Abstract: We show that orbital currents can describe the transport of orbital magnetic moments of Bloch states in models where the formalism based on valley current is not applicable. As a case study, we consider Kekul\'e distorted graphene. We begin by analyzing the band structure in detail and obtain the orbital magnetic moment operator for this model within the framework of the modern theory of magnetism. Despite the simultaneous presence of time-reversal and spatial-inversion symmetries, such operator may be defined, although its expectation value at a given energy is zero. Nevertheless, its presence can be exposed by the application of an external magnetic field. We then proceed to study the transport of these quantities. In the Kekul\'e-$O$ distorted graphene model, the strong coupling between different valleys prevents the definition of a bulk valley current. However, the formalism of the orbital Hall effect together with the non-Abelian description of the magnetic moment operator can be directly applied to describe its transport in these types of models. We show that the Kekul\'e-$O$ distorted graphene model exhibits an orbital Hall insulating plateau whose height is inversely proportional to the energy band gap produced by intervalley coupling. Our results strengthen the perspective of using the orbital Hall effect formalism as a preferable alternative to the valley Hall effect
- Young-Gwan Choi, Daegeun Jo, Kyung-Hun Ko, Dongwook Go, Kyung-Han Kim, Hee Gyum Park, Changyoung Kim, Byoung-Chul Min, Gyung-Min Choi, and Hyun-Woo Lee, “Observation of the orbital hall effect in a light metal ti,” Nature 619, 52–56 (2023).
- Giacomo Sala, Hanchen Wang, William Legrand, and Pietro Gambardella, “Orbital hanle magnetoresistance in a 3d3𝑑3d3 italic_d transition metal,” Phys. Rev. Lett. 131, 156703 (2023).
- Igor Lyalin, Sanaz Alikhah, Marco Berritta, Peter M. Oppeneer, and Roland K. Kawakami, “Magneto-optical detection of the orbital hall effect in chromium,” Phys. Rev. Lett. 131, 156702 (2023).
- Seungyun Han, Hyun-Woo Lee, and Kyoung-Whan Kim, “Orbital dynamics in centrosymmetric systems,” Phys. Rev. Lett. 128, 176601 (2022).
- T. Adamantopoulos, M. Merte, D. Go, F. Freimuth, S. Blügel, and Y. Mokrousov, “Orbital rashba effect as a platform for robust orbital photocurrents,” Phys. Rev. Lett. 132, 076901 (2024).
- Max Rang and Paul J. Kelly, “Orbital relaxation length from first-principles scattering calculations,” (2024), arXiv:2403.06827 [cond-mat.mes-hall] .
- Mahmoud Zeer, Dongwook Go, Peter Schmitz, Tom G. Saunderson, Hao Wang, Jamal Ghabboun, Stefan Blügel, Wulf Wulfhekel, and Yuriy Mokrousov, “Promoting p𝑝pitalic_p-based hall effects by p−d−f𝑝𝑑𝑓p\text{$-$}d\text{$-$}fitalic_p - italic_d - italic_f hybridization in gd-based dichalcogenides,” Phys. Rev. Res. 6, 013095 (2024).
- Tarik P. Cysne, Filipe S. M. Guimarães, Luis M. Canonico, Tatiana G. Rappoport, and R. B. Muniz, “Orbital magnetoelectric effect in zigzag nanoribbons of p𝑝pitalic_p-band systems,” Phys. Rev. B 104, 165403 (2021a).
- Tarik P. Cysne, Filipe S. M. Guimarães, Luis M. Canonico, Marcio Costa, Tatiana G. Rappoport, and R. B. Muniz, “Orbital magnetoelectric effect in nanoribbons of transition metal dichalcogenides,” Phys. Rev. B 107, 115402 (2023).
- Dongwook Go, Daegeun Jo, Changyoung Kim, and Hyun-Woo Lee, “Intrinsic spin and orbital hall effects from orbital texture,” Phys. Rev. Lett. 121, 086602 (2018).
- B. Andrei Bernevig, Taylor L. Hughes, and Shou-Cheng Zhang, “Orbitronics: The intrinsic orbital current in p𝑝pitalic_p-doped silicon,” Phys. Rev. Lett. 95, 066601 (2005).
- Võ Tien Phong, Zachariah Addison, Seongjin Ahn, Hongki Min, Ritesh Agarwal, and E. J. Mele, “Optically controlled orbitronics on a triangular lattice,” Phys. Rev. Lett. 123, 236403 (2019).
- Leandro Salemi and Peter M. Oppeneer, “First-principles theory of intrinsic spin and orbital hall and nernst effects in metallic monoatomic crystals,” Phys. Rev. Mater. 6, 095001 (2022).
- Oliver Busch, Franziska Ziolkowski, Börge Göbel, Ingrid Mertig, and Jürgen Henk, “Ultrafast orbital hall effect in metallic nanoribbons,” Phys. Rev. Res. 6, 013208 (2024).
- Diego B. Fonseca, Lucas L. A. Pereira, and Anderson L. R. Barbosa, “Orbital hall effect in mesoscopic devices,” Phys. Rev. B 108, 245105 (2023).
- Armando Pezo, Diego García Ovalle, and Aurélien Manchon, “Orbital hall physics in two-dimensional dirac materials,” Phys. Rev. B 108, 075427 (2023).
- Hong Liu and Dimitrie Culcer, “Dominance of extrinsic scattering mechanisms in the orbital hall effect: graphene, transition metal dichalcogenides and topological antiferromagnets,” (2023), arXiv:2308.14878 [cond-mat.mes-hall] .
- Ping Tang and Gerrit E. W. Bauer, “Role of disorder in the intrinsic orbital hall effect,” (2024), arXiv:2401.17620 [cond-mat.mes-hall] .
- Oliver Busch, Ingrid Mertig, and Börge Göbel, “Orbital hall effect and orbital edge states caused by s𝑠sitalic_s electrons,” Phys. Rev. Res. 5, 043052 (2023).
- Luis M. Canonico, Tarik P. Cysne, Tatiana G. Rappoport, and R. B. Muniz, “Two-dimensional orbital hall insulators,” Phys. Rev. B 101, 075429 (2020a).
- Luis M. Canonico, Tarik P. Cysne, Alejandro Molina-Sanchez, R. B. Muniz, and Tatiana G. Rappoport, “Orbital hall insulating phase in transition metal dichalcogenide monolayers,” Phys. Rev. B 101, 161409 (2020b).
- Marcio Costa, Bruno Focassio, Luis M. Canonico, Tarik P. Cysne, Gabriel R. Schleder, R. B. Muniz, Adalberto Fazzio, and Tatiana G. Rappoport, “Connecting higher-order topology with the orbital hall effect in monolayers of transition metal dichalcogenides,” Phys. Rev. Lett. 130, 116204 (2023).
- Tarik P. Cysne, Marcio Costa, Luis M. Canonico, M. Buongiorno Nardelli, R. B. Muniz, and Tatiana G. Rappoport, “Disentangling orbital and valley hall effects in bilayers of transition metal dichalcogenides,” Phys. Rev. Lett. 126, 056601 (2021b).
- Anderson L. R. Barbosa, Luis M. Canonico, Jose H. García, and Tatiana G. Rappoport, “Orbital hall effect and topology on a two-dimensional triangular lattice: from bulk to edge,” (2023), arXiv:2311.11715 [cond-mat.mes-hall] .
- Shifeng Qian, Gui-Bin Liu, Cheng-Cheng Liu, and Yugui Yao, “Cnsubscript𝐶𝑛{C}_{n}italic_C start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT-symmetric higher-order topological crystalline insulators in atomically thin transition metal dichalcogenides,” Phys. Rev. B 105, 045417 (2022).
- Shilei Ji, Chuye Quan, Ruijia Yao, Jianping Yang, and Xing’ao Li, “Reversal of orbital hall conductivity and emergence of tunable topological quantum states in orbital hall insulators,” Phys. Rev. B 109, 155407 (2024).
- Di Xiao, Wang Yao, and Qian Niu, “Valley-contrasting physics in graphene: Magnetic moment and topological transport,” Phys. Rev. Lett. 99, 236809 (2007).
- Di Xiao, Ming-Che Chang, and Qian Niu, “Berry phase effects on electronic properties,” Rev. Mod. Phys. 82, 1959–2007 (2010).
- Ming-Che Chang and Qian Niu, “Berry curvature, orbital moment, and effective quantum theory of electrons in electromagnetic fields,” Journal of Physics: Condensed Matter 20, 193202 (2008).
- Yuri D. Lensky, Justin C. W. Song, Polnop Samutpraphoot, and Leonid S. Levitov, “Topological valley currents in gapped dirac materials,” Phys. Rev. Lett. 114, 256601 (2015).
- Jieun Lee, Kin Fai Mak, and Jie Shan, “Electrical control of the valley hall effect in bilayer mos2 transistors,” Nature Nanotechnology 11, 421–425 (2016).
- Mengqiao Sui, Guorui Chen, Liguo Ma, Wen-Yu Shan, Dai Tian, Kenji Watanabe, Takashi Taniguchi, Xiaofeng Jin, Wang Yao, Di Xiao, and Yuanbo Zhang, “Gate-tunable topological valley transport in bilayer graphene,” Nature Physics 11, 1027–1031 (2015).
- Thomas Aktor, Jose H. Garcia, Stephan Roche, Antti-Pekka Jauho, and Stephen R. Power, “Valley hall effect and nonlocal resistance in locally gapped graphene,” Phys. Rev. B 103, 115406 (2021).
- Justin C. W. Song and Giovanni Vignale, “Low-dissipation edge currents without edge states,” Phys. Rev. B 99, 235405 (2019).
- Rory Brown, Niels R. Walet, and Francisco Guinea, “Edge modes and nonlocal conductance in graphene superlattices,” Phys. Rev. Lett. 120, 026802 (2018).
- A. Aharon-Steinberg, A. Marguerite, D. J. Perello, K. Bagani, T. Holder, Y. Myasoedov, L. S. Levitov, A. K. Geim, and E. Zeldov, “Long-range nontopological edge currents in charge-neutral graphene,” Nature 593, 528–534 (2021).
- George Kirczenow, “Valley currents and nonlocal resistances of graphene nanostructures with broken inversion symmetry from the perspective of scattering theory,” Phys. Rev. B 92, 125425 (2015).
- Alexander Kazantsev, Amelia Mills, Eoin O’Neill, Hao Sun, Giovanni Vignale, and Alessandro Principi, “Nonconservation of the valley density and its implications for the observation of the valley hall effect,” Phys. Rev. Lett. 132, 106301 (2024).
- Stephan Roche, Stephen R Power, Branislav K Nikolić, José Hugo García, and Antti-Pekka Jauho, “Have mysterious topological valley currents been observed in graphene superlattices?” Journal of Physics: Materials 5, 021001 (2022).
- Dimitrie Culcer, Yugui Yao, and Qian Niu, “Coherent wave-packet evolution in coupled bands,” Phys. Rev. B 72, 085110 (2005).
- Sayantika Bhowal and Giovanni Vignale, “Orbital hall effect as an alternative to valley hall effect in gapped graphene,” Phys. Rev. B 103, 195309 (2021).
- Tarik P. Cysne, Sayantika Bhowal, Giovanni Vignale, and Tatiana G. Rappoport, “Orbital hall effect in bilayer transition metal dichalcogenides: From the intra-atomic approximation to the bloch states orbital magnetic moment approach,” Phys. Rev. B 105, 195421 (2022).
- O V Gamayun, V P Ostroukh, N V Gnezdilov, İ Adagideli, and C W J Beenakker, “Valley-momentum locking in a graphene superlattice with y-shaped kekulé bond texture,” New Journal of Physics 20, 023016 (2018).
- Elias Andrade, Ramon Carrillo-Bastos, and Gerardo G. Naumis, “Valley engineering by strain in kekulé-distorted graphene,” Phys. Rev. B 99, 035411 (2019).
- Changhua Bao, Hongyun Zhang, Teng Zhang, Xi Wu, Laipeng Luo, Shaohua Zhou, Qian Li, Yanhui Hou, Wei Yao, Liwei Liu, Pu Yu, Jia Li, Wenhui Duan, Hong Yao, Yeliang Wang, and Shuyun Zhou, “Experimental evidence of chiral symmetry breaking in kekulé-ordered graphene,” Phys. Rev. Lett. 126, 206804 (2021).
- Christopher Gutiérrez, Cheol-Joo Kim, Lola Brown, Theanne Schiros, Dennis Nordlund, Edward B. Lochocki, Kyle M. Shen, Jiwoong Park, and Abhay N. Pasupathy, “Imaging chiral symmetry breaking from kekulé bond order in graphene,” Nature Physics 12, 950–958 (2016).
- Zhuonan Lin, Wei Qin, Jiang Zeng, Wei Chen, Ping Cui, Jun-Hyung Cho, Zhenhua Qiao, and Zhenyu Zhang, “Competing gap opening mechanisms of monolayer graphene and graphene nanoribbons on strong topological insulators,” Nano Letters 17, 4013–4018 (2017).
- J. L. Mañes, F. Guinea, and María A. H. Vozmediano, “Existence and topological stability of fermi points in multilayered graphene,” Phys. Rev. B 75, 155424 (2007).
- Mahmoud M. Asmar and Sergio E. Ulloa, “Symmetry-breaking effects on spin and electronic transport in graphene,” Phys. Rev. B 91, 165407 (2015).
- Walter Kohn, “Theory of bloch electrons in a magnetic field: The effective hamiltonian,” Phys. Rev. 115, 1460–1478 (1959).
- Ming-Che Chang and Qian Niu, “Berry phase, hyperorbits, and the hofstadter spectrum: Semiclassical dynamics in magnetic bloch bands,” Phys. Rev. B 53, 7010–7023 (1996).
- Rhonald Burgos Atencia, Amit Agarwal, and Dimitrie Culcer, “Orbital angular momentum of bloch electrons: equilibrium formulation, magneto-electric phenomena, and the orbital hall effect,” (2024), arXiv:2403.07055 [cond-mat.mes-hall] .
- Tianyi Cai, Shengyuan A. Yang, Xiao Li, Fan Zhang, Junren Shi, Wang Yao, and Qian Niu, “Magnetic control of the valley degree of freedom of massive dirac fermions with application to transition metal dichalcogenides,” Phys. Rev. B 88, 115140 (2013).
- Ivo Souza and David Vanderbilt, “Dichroic f𝑓fitalic_f-sum rule and the orbital magnetization of crystals,” Phys. Rev. B 77, 054438 (2008).
- Fengyuan Xuan and Su Ying Quek, “Valley zeeman effect and landau levels in two-dimensional transition metal dichalcogenides,” Phys. Rev. Res. 2, 033256 (2020).
- T. Thonhauser, Davide Ceresoli, David Vanderbilt, and R. Resta, “Orbital magnetization in periodic insulators,” Phys. Rev. Lett. 95, 137205 (2005).
- Di Xiao, Junren Shi, and Qian Niu, “Berry phase correction to electron density of states in solids,” Phys. Rev. Lett. 95, 137204 (2005).
- Luis M. Canonico, Jose H. García, and Stephan Roche, “Real-space calculation of orbital hall responses in disordered materials,” (2024), arXiv:2404.01739 [cond-mat.mes-hall] .
- Yafei Ren, Xinzhou Deng, Zhenhua Qiao, Changsheng Li, Jeil Jung, Changgan Zeng, Zhenyu Zhang, and Qian Niu, “Single-valley engineering in graphene superlattices,” Phys. Rev. B 91, 245415 (2015).
- Juan Juan Wang, S. Liu, J. Wang, and Jun-Feng Liu, “Valley-coupled transport in graphene with y-shaped kekulé structure,” Phys. Rev. B 98, 195436 (2018).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.