Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Optimized measurement-free and fault-tolerant quantum error correction for neutral atoms (2404.11663v2)

Published 17 Apr 2024 in quant-ph

Abstract: A major challenge in performing quantum error correction (QEC) is implementing reliable measurements and conditional feed-forward operations. In quantum computing platforms supporting unconditional qubit resets, or a constant supply of fresh qubits, alternative schemes which do not require measurements are possible. In such schemes, the error correction is realized via crafted coherent quantum feedback. We propose implementations of small measurement-free QEC schemes, which are fault-tolerant to circuit-level noise. These implementations are guided by several heuristics to achieve fault-tolerance: redundant syndrome information is extracted, and additional single-shot flag qubits are used. By carefully designing the circuit, the additional overhead of these measurement-free schemes is moderate compared to their conventional measurement-and-feed-forward counterparts. We highlight how this alternative approach paves the way towards implementing resource-efficient measurement-free QEC on neutral-atom arrays.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. B. M. Terhal, Quantum error correction for quantum memories, Reviews of Modern Physics 87, 307 (2015), 1302.3428 .
  2. E. T. Campbell, B. M. Terhal, and C. Vuillot, Roads towards fault-tolerant universal quantum computation, Nature 549, 172 (2017), 1612.07330 .
  3. Google Quantum AI, Exponential suppression of bit or phase errors with cyclic error correction, Nature 595, 383 (2021).
  4. Google Quantum AI, Suppressing quantum errors by scaling a surface code logical qubit, Nature 614, 676 (2023).
  5. S. Huang, K. R. Brown, and M. Cetina, Comparing Shor and Steane error correction using the Bacon-Shor code (2023), arXiv:2312.10851 .
  6. G. A. Paz-Silva, G. K. Brennen, and J. Twamley, Fault tolerance with noisy and slow measurements and preparation, Physical Review Letters 105, 100501 (2010).
  7. D. Crow, R. Joynt, and M. Saffman, Improved error thresholds for measurement-free error correction, Physical Review Letters 117, 130503 (2016).
  8. S. Heußen, D. F. Locher, and M. Müller, Measurement-free fault-tolerant quantum error correction in near-term devices, PRX Quantum 5, 010333 (2024).
  9. D. Bacon, Operator quantum error-correcting subsystems for self-correcting quantum memories, Phys. Rev. A 73, 012340 (2006).
  10. P. Aliferis and A. W. Cross, Subsystem fault tolerance with the Bacon-Shor code, Phys. Rev. Lett. 98, 220502 (2007).
  11. P. W. Shor, Scheme for reducing decoherence in quantum computer memory, Phys. Rev. A 52, R2493 (1995).
  12. S. B. Bravyi and A. Y. Kitaev, Quantum codes on a lattice with boundary (1998), arXiv:quant-ph/9811052 .
  13. A. M. Steane, Error correcting codes in quantum theory, Phys. Rev. Lett. 77, 793 (1996a).
  14. H. Bombin and M. A. Martin-Delgado, Topological quantum distillation, Phys. Rev. Lett. 97, 180501 (2006).
  15. C. Chamberland and M. E. Beverland, Flag fault-tolerant error correction with arbitrary distance codes, Quantum 2, 53 (2018).
  16. R. Chao and B. W. Reichardt, Flag fault-tolerant error correction for any stabilizer code, PRX Quantum 1, 010302 (2020).
  17. R. Chao and B. W. Reichardt, Quantum error correction with only two extra qubits, Physical Review Letters 121, 050502 (2018).
  18. P. Prabhu and B. W. Reichardt, Fault-tolerant syndrome extraction and cat state preparation with fewer qubits, Quantum 7, 1154 (2023).
  19. In a controlled unitary, we define a one-control as the qubit that leads to the application of the unitary if the control is in |1⟩ket1\mathinner{|{1}\rangle}| 1 ⟩. These are illustrated in the diagrams with a filled circle.
  20. A. R. Calderbank and P. W. Shor, Good quantum error-correcting codes exist, Phys. Rev. A 54, 1098 (1996).
  21. A. Steane, Multiple-particle interference and quantum error correction, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 452, 2551 (1996b).
  22. Cirq Developers, Cirq, Zenodo [Online] (2023).
  23. This corresponds to a Haar-uniform sampling over initial logical states.
  24. P.-H. Liou and C.-Y. Lai, Parallel syndrome extraction with shared flag qubits for Calderbank-Shor-Steane codes of distance three, Physical Review A 107, 022614 (2023).
  25. We note that the thresholds claimed are for a single logical basis state different than |i⟩Lsubscriptket𝑖𝐿\mathinner{|{i}\rangle}_{L}start_ATOM | italic_i ⟩ end_ATOM start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT, which in our simulations lowers the logical performance.
  26. M. R. Geller and Z. Zhou, Efficient error models for fault-tolerant architectures and the Pauli twirling approximation, Phys. Rev. A 88, 012314 (2013).
  27. H. Bombín, Single-shot fault-tolerant quantum error correction, Phys. Rev. X 5, 031043 (2015).
  28. T. J. Yoder, R. Takagi, and I. L. Chuang, Universal fault-tolerant gates on concatenated stabilizer codes, Physical Review X 6, 031039 (2016).
  29. A. Paetznick and B. W. Reichardt, Universal fault-tolerant quantum computation with only transversal gates and error correction, Phys. Rev. Lett. 111, 090505 (2013).
  30. T. Jochym-O’Connor and R. Laflamme, Using concatenated quantum codes for universal fault-tolerant quantum gates, Physical Review Letters 112, 010505 (2014).
  31. C. Chamberland, T. Jochym-O’Connor, and R. Laflamme, Overhead analysis of universal concatenated quantum codes, Physical Review A 95, 022313 (2017).
  32. H. Goto, Y. Ho, and T. Kanao, Measurement-free fault-tolerant logical zero-state encoding of the distance-three nine-qubit surface code in a one-dimensional qubit array, Physical Review Research 5, 043137 (2023).
  33. Y. Tomita and K. M. Svore, Low-distance surface codes under realistic quantum noise, Physical Review A 90, 062320 (2014).
  34. S. Jandura and G. Pupillo, Time-optimal two- and three-qubit gates for Rydberg atoms, Quantum 6, 712 (2022).
Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 posts and received 5 likes.