Quantized Acoustoelectric Floquet Effect in Quantum Nanowires
Abstract: External coherent fields can drive quantum materials into non-equilibrium states, revealing exotic properties that are unattainable under equilibrium conditions -- an approach known as ``Floquet engineering.'' While optical lasers have commonly been used as the driving fields, recent advancements have introduced nontraditional sources, such as coherent phonon drives. Building on this progress, we demonstrate that driving a metallic quantum nanowire with a coherent wave of terahertz phonons can induce an electronic steady state characterized by a persistent quantized current along the wire. The quantization of the current is achieved due to the coupling of electrons to the nanowire's vibrational modes, providing the low-temperature heat bath and energy relaxation mechanisms. Our findings underscore the potential of using non-optical drives, such as coherent phonon sources, to induce non-equilibrium phenomena in materials. Furthermore, our approach suggests a new method for the high-precision detection of coherent phonon oscillations via transport measurements.
- Q. Guo, I. Esin, C. Li, C. Chen, S. Liu, J. H. Edgar, S. Zhou, E. Demler, G. Refael, and F. Xia, “Hyperbolic phonon-polariton electroluminescence in graphene-hbn van der waals heterostructures,” (2023).
- A. A. Balandin and D. L. Nika, Materials Today 15, 266 (2012).
- M. Maldovan, Nature 503, 209 (2013).
- A. Balandin, ACS Nano 14 (2020), 10.1021/acsnano.0c02718.
- R. H. Parmenter, Phys. Rev. 89, 990 (1953).
- G. Weinreich and H. G. White, Phys. Rev. 106, 1104 (1957).
- F. Mahfouzi and N. Kioussis, Phys. Rev. Lett. 128, 215902 (2022).
- Y. Peng, Phys. Rev. Lett. 128, 186802 (2022).
- Q. Gao and Q. Niu, Phys. Rev. B 106, 224311 (2022).
- A. H. Barajas-Aguilar, J. Zion, I. Sequeira, A. Z. Barabas, T. Taniguchi, K. Watanabe, E. Barrett, T. Scaffidi, and J. D. Sanchez-Yamagishi, “Electrically-driven amplification of terahertz acoustic waves in graphene,” (2023).
- R. Citro and M. Aidelsburger, Nature Reviews Physics 5, 87–101 (2023).
- Q. Niu, Phys. Rev. Lett. 64, 1812 (1990).
- W. Eisfeld and K. F. Renk, Applied Physics Letters 34, 481 (1979).
- Y. Yoon, Z. Lu, C. Uzundal, R. Qi, W. Zhao, S. Chen, Q. Feng, K. Watanabe, T. Taniguchi, M. F. Crommie, and F. Wang, “Terahertz phonon engineering and spectroscopy with van der waals heterostructures,” (2023a).
- Y. Yoon, Z. Lu, C. Uzundal, R. Qi, W. Zhao, S. Chen, Q. Feng, K. Watanabe, T. Taniguchi, M. F. Crommie, and F. Wang, “Terahertz phonon engineering and spectroscopy with van der waals heterostructures,” (2023b).
- D. Fathi, Journal of Nanotechnology 2011 (2011), 10.1155/2011/471241.
- C. L. Kane and E. J. Mele, Phys. Rev. Lett. 78, 1932 (1997).
- See Supplemental Material at [url] for details of derivations and numerical calculations, which includes Refs. Sato et al. (2019); Meier et al. (1994).
- While we consider coherent longitudinal phonon modes, coherent transverse modes should induce similar behavior.
- For simplicity, we assume that the wavelength of the coherent phonon mode is commensurate with the periodicity of the CNT along the tube axis.
- M. S. Rudner and N. H. Lindner, “The floquet engineer’s handbook,” (2020).
- The factor of two in Eq. (2) accounts for spin degeneracy.
- H. Zhao and S. Mazumdar, Phys. Rev. Lett. 93, 157402 (2004).
- M. Genske and A. Rosch, Phys. Rev. A 92, 062108 (2015).
- W. Kohn, Journal of Statistical Physics 103, 417 (2001).
- S. A. Khrapak, Phys. Rev. Res. 2, 012040 (2020).
- F. Lindemann, Z. Phys. 11, 609 (1910).
- D. J. Thouless, Phys. Rev. B 27, 6083 (1983).
- C. Shu, K. Zhang, and K. Sun, “Loss-induced universal one-way transport in periodically driven systems,” (2023).
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.