Papers
Topics
Authors
Recent
2000 character limit reached

Boosting Medical Image Segmentation Performance with Adaptive Convolution Layer (2404.11361v1)

Published 17 Apr 2024 in eess.IV and cs.CV

Abstract: Medical image segmentation plays a vital role in various clinical applications, enabling accurate delineation and analysis of anatomical structures or pathological regions. Traditional CNNs have achieved remarkable success in this field. However, they often rely on fixed kernel sizes, which can limit their performance and adaptability in medical images where features exhibit diverse scales and configurations due to variability in equipment, target sizes, and expert interpretations. In this paper, we propose an adaptive layer placed ahead of leading deep-learning models such as UCTransNet, which dynamically adjusts the kernel size based on the local context of the input image. By adaptively capturing and fusing features at multiple scales, our approach enhances the network's ability to handle diverse anatomical structures and subtle image details, even for recently performing architectures that internally implement intra-scale modules, such as UCTransnet. Extensive experiments are conducted on benchmark medical image datasets to evaluate the effectiveness of our proposal. It consistently outperforms traditional \glspl{CNN} with fixed kernel sizes with a similar number of parameters, achieving superior segmentation Accuracy, Dice, and IoU in popular datasets such as SegPC2021 and ISIC2018. The model and data are published in the open-source repository, ensuring transparency and reproducibility of our promising results.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (55)
  1. Deep semantic segmentation of natural and medical images: a review. Artificial Intelligence Review, 54(1):137–178, 1 2021. ISSN 0269-2821. doi:10.1007/s10462-020-09854-1. URL https://link.springer.com/10.1007/s10462-020-09854-1.
  2. Meta-seg: A survey of meta-learning for image segmentation. Pattern Recognition, 126:108586, 2022. ISSN 00313203. doi:10.1016/j.patcog.2022.108586. URL https://doi.org/10.1016/j.patcog.2022.108586.
  3. Radiomics and Radiogenomics: Technical Basis and Clinical Applications. CRC Press, Boca Raton, FL, 7 2019. ISBN 9781351208277. doi:10.1201/9781351208277. URL https://www.taylorfrancis.com/books/9781351208260.
  4. A Review of Deep-Learning-Based Medical Image Segmentation Methods. Sustainability, 13(3):1224, 1 2021. ISSN 2071-1050. doi:10.3390/su13031224. URL https://www.mdpi.com/2071-1050/13/3/1224.
  5. Radiomics and Its Clinical Application: Artificial Intelligence and Medical Big Data. Academic Press, an imprint of Elsevier, 2021. ISBN 9780128181010. doi:10.1016/C2018-0-02044-7. URL https://linkinghub.elsevier.com/retrieve/pii/C20180020447.
  6. DSEU-net: A novel deep supervision SEU-net for medical ultrasound image segmentation. Expert Systems with Applications, 223(March):119939, 2023. ISSN 09574174. doi:10.1016/j.eswa.2023.119939. URL https://doi.org/10.1016/j.eswa.2023.119939.
  7. Deep and machine learning techniques for medical imaging-based breast cancer: A comprehensive review. Expert Systems with Applications, 167(October 2020):114161, 2021. ISSN 09574174. doi:10.1016/j.eswa.2020.114161. URL https://doi.org/10.1016/j.eswa.2020.114161.
  8. Deep learning neural networks for medical image segmentation of brain tumours for diagnosis: a recent review and taxonomy. Journal of Ambient Intelligence and Humanized Computing, 12(1):455–483, 1 2021. ISSN 1868-5137. doi:10.1007/s12652-020-01998-w. URL https://doi.org/10.1007/s12652-020-01998-whttps://link.springer.com/10.1007/s12652-020-01998-w.
  9. Deep Neural Networks for Medical Image Segmentation. Journal of Healthcare Engineering, 2022:1–15, 3 2022. ISSN 2040-2309. doi:10.1155/2022/9580991. URL https://www.hindawi.com/journals/jhe/2022/9580991/.
  10. Adversarial attacks and defenses on AI in medical imaging informatics: A survey. Expert Systems with Applications, 198(March):116815, 2022. ISSN 09574174. doi:10.1016/j.eswa.2022.116815. URL https://doi.org/10.1016/j.eswa.2022.116815.
  11. Artificial intelligence in disease diagnosis: a systematic literature review, synthesizing framework and future research agenda. Journal of Ambient Intelligence and Humanized Computing, 2022. ISSN 18685145. doi:10.1007/s12652-021-03612-z.
  12. Novel edge detection method for nuclei segmentation of liver cancer histopathology images. Journal of Ambient Intelligence and Humanized Computing, 14(1):479–496, 2023. ISSN 18685145. doi:10.1007/s12652-021-03308-4.
  13. A large annotated medical image dataset for the development and evaluation of segmentation algorithms. arXiv, 2 2019. URL http://arxiv.org/abs/1902.09063.
  14. The Medical Segmentation Decathlon. Nature Communications, 13(1):4128, 7 2022. ISSN 2041-1723. doi:10.1038/s41467-022-30695-9. URL https://www.nature.com/articles/s41467-022-30695-9.
  15. NIH Pancreas-CT Dataset, 2016. URL https://wiki.cancerimagingarchive.net/x/eIlXAQ.
  16. Global and Local Feature Reconstruction for Medical Image Segmentation. IEEE Transactions on Medical Imaging, 41(9):2273–2284, 2022. ISSN 1558254X. doi:10.1109/TMI.2022.3162111.
  17. Breast cancer detection in mammogram: combining modified CNN and texture feature based approach. Journal of Ambient Intelligence and Humanized Computing, pages 1–10, 1 2022. ISSN 1868-5137. doi:10.1007/s12652-022-03713-3. URL https://link.springer.com/10.1007/s12652-022-03713-3.
  18. A Novel Approach in Bio-Medical Image Segmentation for Analyzing Brain Cancer Images with U-NET Semantic Segmentation and TPLD Models Using SVM. Traitement du Signal, 39(2):419–430, 2022. ISSN 19585608. doi:10.18280/ts.390203.
  19. A Heteromorphous Deep CNN Framework for Medical Image Segmentation Using Local Binary Pattern. IEEE Access, 10:63466–63480, 2022. ISSN 21693536. doi:10.1109/ACCESS.2022.3183331.
  20. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nature Methods, 18(2):203–211, 2021. ISSN 15487105. doi:10.1038/s41592-020-01008-z. URL http://dx.doi.org/10.1038/s41592-020-01008-z.
  21. An efficient hybrid methodology for an early detection of breast cancer in digital mammograms. Journal of Ambient Intelligence and Humanized Computing, 13(5), 5 2022. ISSN 1868-5137. doi:10.1007/s12652-022-03895-w. URL https://doi.org/10.1007/s12652-022-03895-whttps://link.springer.com/10.1007/s12652-022-03895-w.
  22. MultiResUNet: Rethinking the U-Net architecture for multimodal biomedical image segmentation. Neural Networks, 121:74–87, 2020. ISSN 18792782. doi:10.1016/j.neunet.2019.08.025. URL https://arxiv.org/pdf/1902.04049.pdf.
  23. V-Net: Fully convolutional neural networks for volumetric medical image segmentation. Proceedings - 2016 4th International Conference on 3D Vision, 3DV 2016, pages 565–571, 6 2016. doi:10.1109/3DV.2016.79. URL https://arxiv.org/pdf/1606.04797http://arxiv.org/abs/1606.04797.
  24. Adaptive Convolutions with Per-pixel Dynamic Filter Atom. In 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pages 12282–12291. IEEE, 10 2021a. ISBN 978-1-6654-2812-5. doi:10.1109/ICCV48922.2021.01208. URL https://openaccess.thecvf.com/content/ICCV2021/papers/Wang_Adaptive_Convolutions_With_Per-Pixel_Dynamic_Filter_Atom_ICCV_2021_paper.pdfhttps://openaccess.thecvf.com/content/ICCV2021/supplemental/Wang_Adaptive_Convolutions_With_ICCV_2021_supplemental.pdf.
  25. DCFNet: Deep Neural Network with Decomposed Convolutional Filters. 35th International Conference on Machine Learning, ICML 2018, 9:6687–6696, 2018. URL https://arxiv.org/pdf/1802.04145.pdf.
  26. U-Net: Convolutional Networks for Biomedical Image Segmentation. In IEEE Access, volume 9, pages 234–241. IEEE Computer Society, 5 2015. doi:10.1007/978-3-319-24574-4_28. URL http://link.springer.com/10.1007/978-3-319-24574-4_28http://arxiv.org/abs/1505.04597.
  27. Medical Image Segmentation Review: The success of U-Net. arXiv, pages 1–38, 2022. URL http://arxiv.org/abs/2211.14830.
  28. MISSFormer: An Effective Transformer for 2D Medical Image Segmentation. IEEE Transactions on Medical Imaging, 42(5):1484–1494, 5 2023. ISSN 0278-0062. doi:10.1109/TMI.2022.3230943. URL https://arxiv.org/pdf/2109.07162.pdfhttps://ieeexplore.ieee.org/document/9994763/.
  29. UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-Wise Perspective with Transformer. Proceedings of the 36th AAAI Conference on Artificial Intelligence, AAAI 2022, 36:2441–2449, 2022. ISSN 2159-5399. doi:10.1609/aaai.v36i3.20144.
  30. 3D U-net: Learning dense volumetric segmentation from sparse annotation. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9901 LNCS:424–432, 2016. ISSN 16113349. doi:10.1007/978-3-319-46723-8_49. URL https://arxiv.org/pdf/1606.06650.pdf.
  31. Going deeper with convolutions. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 1–9. IEEE, 6 2015. ISBN 978-1-4673-6964-0. doi:10.1109/CVPR.2015.7298594. URL https://www.cs.unc.edu/~wliu/papers/GoogLeNet.pdfhttps://onlinelibrary.wiley.com/doi/10.1002/jctb.4820http://ieeexplore.ieee.org/document/7298594/.
  32. Rethinking the Inception Architecture for Computer Vision. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-Decem:2818–2826, 2016. ISSN 10636919. doi:10.1109/CVPR.2016.308. URL https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Szegedy_Rethinking_the_Inception_CVPR_2016_paper.pdf.
  33. Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning. Proceedings of the AAAI Conference on Artificial Intelligence, 31(1):11–24, 2 2017. ISSN 2374-3468. doi:10.1609/aaai.v31i1.11231. URL http://arxiv.org/abs/1512.00567https://ojs.aaai.org/index.php/AAAI/article/view/11231.
  34. MSMANet: A multi-scale mesh aggregation network for brain tumor segmentation. Applied Soft Computing, 110:107733, 2021. ISSN 15684946. doi:10.1016/j.asoc.2021.107733. URL https://doi.org/10.1016/j.asoc.2021.107733.
  35. An Adaptive Kernels Layer for Deep Neural Networks Based on Spectral Analysis for Image Applications. Sensors, 23(3), 2023. ISSN 14248220. doi:10.3390/s23031527.
  36. MultiResUNet3+: A Full-Scale Connected Multi-Residual UNet Model to Denoise Electrooculogram and Electromyogram Artifacts from Corrupted Electroencephalogram Signals. Bioengineering, 10(5), 2023. ISSN 23065354. doi:10.3390/bioengineering10050579.
  37. DC-UNet: rethinking the U-Net architecture with dual channel efficient CNN for medical image segmentation. In Bennett A. Landman and Ivana Išgum, editors, Medical Imaging 2021: Image Processing, page 98. SPIE, 2 2021. ISBN 9781510640214. doi:10.1117/12.2582338. URL https://arxiv.org/ftp/arxiv/papers/2006/2006.00414.pdfhttps://www.spiedigitallibrary.org/conference-proceedings-of-spie/11596/2582338/DC-UNet--rethinking-the-U-Net-architecture-with-dual/10.1117/12.2582338.full.
  38. A lightweight neural network with multiscale feature enhancement for liver CT segmentation. Scientific Reports, 12(1):1–12, 2022. ISSN 20452322. doi:10.1038/s41598-022-16828-6. URL https://doi.org/10.1038/s41598-022-16828-6.
  39. Mourad Gridach. PyDiNet: Pyramid Dilated Network for medical image segmentation. Neural Networks, 140:274–281, 2021. ISSN 18792782. doi:10.1016/j.neunet.2021.03.023. URL https://doi.org/10.1016/j.neunet.2021.03.023.
  40. Retinal Vessels Segmentation Based on Dilated Multi-Scale Convolutional Neural Network. IEEE Access, 7:76342–76352, 2019. ISSN 21693536. doi:10.1109/ACCESS.2019.2922365.
  41. MCRNet: Multi-level context refinement network for semantic segmentation in breast ultrasound imaging. Neurocomputing, 470:154–169, 2022. ISSN 18728286. doi:10.1016/j.neucom.2021.10.102. URL https://doi.org/10.1016/j.neucom.2021.10.102.
  42. DCU-Net: Multi-scale U-Net for brain tumor segmentation. Journal of X-Ray Science and Technology, 28(4):709–726, 2020. ISSN 08953996. doi:10.3233/xst-200650. URL https://sci.bban.top/pdf/10.3233/XST-200650.pdf#view=FitH.
  43. MSA-Net: Multiscale spatial attention network for medical image segmentation. Alexandria Engineering Journal, 70:453–473, 2023. ISSN 11100168. doi:10.1016/j.aej.2023.02.039. URL https://doi.org/10.1016/j.aej.2023.02.039.
  44. ARMS Net: Overlapping chromosome segmentation based on Adaptive Receptive field Multi-Scale network. Biomedical Signal Processing and Control, 68(January):102811, 2021b. ISSN 17468108. doi:10.1016/j.bspc.2021.102811. URL https://doi.org/10.1016/j.bspc.2021.102811.
  45. CFNet: A medical image segmentation method using the multi-view attention mechanism and adaptive fusion strategy. Biomedical Signal Processing and Control, 79(P1):104112, 2023. ISSN 17468108. doi:10.1016/j.bspc.2022.104112. URL https://doi.org/10.1016/j.bspc.2022.104112.
  46. TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation. arXiv, pages 1–13, 2 2021. URL http://arxiv.org/abs/2102.04306.
  47. Road Extraction by Deep Residual U-Net. IEEE Geoscience and Remote Sensing Letters, 15(5):749–753, 2018. ISSN 15580571. doi:10.1109/LGRS.2018.2802944. URL https://arxiv.org/pdf/1711.10684.pdf.
  48. Unet++: A nested u-net architecture for medical image segmentation. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11045 LNCS:3–11, 2018. ISSN 16113349. doi:10.1007/978-3-030-00889-5_1. URL https://arxiv.org/pdf/1807.10165.pdf.
  49. Attention U-Net: Learning Where to Look for the Pancreas. arXiv, 4 2018. URL http://arxiv.org/abs/1804.03999.
  50. Activities of Daily Living Recognition with Binary Environment Sensors Using Deep Learning: A Comparative Study. IEEE Sensors Journal, 21(4):5423–5433, 2021c. ISSN 15581748. doi:10.1109/JSEN.2020.3035062.
  51. Very deep convolutional networks for large-scale image recognition. 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings, pages 1–14, 2015. URL https://arxiv.org/pdf/1409.1556.pdf.
  52. SegPC-2021: A challenge & dataset on segmentation of Multiple Myeloma plasma cells from microscopic images. Medical Image Analysis, 83(October 2022):102677, 2023. ISSN 13618423. doi:10.1016/j.media.2022.102677. URL https://doi.org/10.1016/j.media.2022.102677.
  53. Segpc-2021: Segmentation of multiple myeloma plasma cells in microscopic images. IEEE Dataport, 1(1):1, 2021. doi:10.21227/7np1-2q42.
  54. Skin Lesion Analysis Toward Melanoma Detection 2018: A Challenge Hosted by the International Skin Imaging Collaboration (ISIC). pages 1–12, 2019. URL http://arxiv.org/abs/1902.03368.
  55. DSNet: Automatic dermoscopic skin lesion segmentation. Computers in Biology and Medicine, 120(March):103738, 2020. ISSN 18790534. doi:10.1016/j.compbiomed.2020.103738. URL https://doi.org/10.1016/j.compbiomed.2020.103738.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.