Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Photonic indistinguishability characterization and optimization for cavity-based single-photon source (2404.11193v1)

Published 17 Apr 2024 in quant-ph

Abstract: Indistinguishability of single photons from independent sources is critically important for scalable quantum technologies. We provide a comprehensive comparison of single-photon indistinguishability of different kinds of cavity quantum electrodynamics (CQED) systems by numerically simulating Hong-Ou-Mandel (HOM) two-photon interference. We find that the CQED system using nature atoms exhibit superiority in indistinguishability, benefiting from the inherently identical features. Moreover, a $\Lambda-$type three-level atoms show essential robust against variation of various system parameters because it exploits the two ground states with considerable smaller decay rates for single-photon generation. Furthermore, a machine learning-based framework is proposed to significantly and robustly improve single-photon indistinguishability for non-identical two CQED systems. This work may pave the way for designing and engineering reliable and scalable photon-based quantum technologies.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (10)
  1. J. L. O’Brien, Optical quantum computing, Science 318, 1567 (2007).
  2. A. Kuhn and D. Ljunggren, Cavity-based single-photon sources, Contemp. Phys. 51, 289 (2010).
  3. I. Aharonovich, D. Englund, and M. Toth, Solid-state single-photon emitters, Nat. Photonics 10, 631 (2016).
  4. C.-Y. Lu and J.-W. Pan, Quantum-dot single-photon sources for the quantum internet, Nat. Nanotechnol. 16, 1294 (2021).
  5. B. Lounis and W. E. Moerner, Single photons on demand from a single molecule at room temperature, Nature (London) 407, 491 (2000).
  6. A. Kuhn, M. Hennrich, and G. Rempe, Deterministic single-photon source for distributed quantum networking, Phys. Rev. Lett. 89, 067901 (2002).
  7. E. M. Purcell, Spontaneous emission probabilities at radio frequencies, in Confined Electrons and Photons: New Physics and Applications, edited by E. Burstein and C. Weisbuch (Springer US, Boston, MA, 1995) pp. 839–839.
  8. M. Krenn, M. Erhard, and A. Zeilinger, Computer-inspired quantum experiments, Nat. Rev. Phys 2, 649 (2020).
  9. M. Cai and K. Xia, Optimizing continuous dynamical decoupling with machine learning, Phys. Rev. A 106, 042434 (2022).
  10. R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction (MIT press, 2018).

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.