Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 67 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

A solvable non-unitary fermionic long-range model with extended symmetry (2404.10164v4)

Published 15 Apr 2024 in cond-mat.str-el, hep-th, math-ph, math.MP, and nlin.SI

Abstract: We define and study a long-range version of the XX model, arising as the free-fermion point of the XXZ-type Haldane--Shastry (HS) chain. It has a description via non-unitary fermions, based on the free-fermion Temperley--Lieb algebra, and may also be viewed as an alternating $\mathfrak{gl}(1|1)$ spin chain. Even and odd length behave very differently; we focus on odd length. The model is integrable, and we explicitly identify two commuting hamiltonians. While non-unitary, their spectrum is real by PT-symmetry. One hamiltonian is chiral and quadratic in fermions, while the other is parity-invariant and quartic. Their one-particle spectra have two linear branches, realising a massless relativistic dispersion on the lattice. The appropriate fermionic modes arise from 'quasi-translation' symmetry, which replaces ordinary translation symmetry. The model exhibits exclusion statistics, like the isotropic HS chain, with even more 'extended symmetry' and larger degeneracies.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. W. M. Koo and H. Saleur, Representations of the virasoro algebra from lattice models, Nucl. Phys. B 426, 459 (1994), hep-th/9312156 .
  2. A. M. Gainutdinov, N. Read, and H. Saleur, Continuum limit and symmetries of the periodic g⁢l⁢(1|1)𝑔𝑙conditional11gl(1|1)italic_g italic_l ( 1 | 1 ) spin chain, Nucl. Phys. B 871, 245 (2013), 1112.3403 .
  3. F. Calogero, Exactly solvable one-dimensional many-body problems, Lett. Nuov. Cim. (1971–1985) 13, 411 (1975).
  4. B. Sutherland, Exact ground-state wave function for a one-dimensional plasma, Phys. Rev. Lett. 34, 1083 (1975).
  5. F. D. M. Haldane, Exact Jastrow–Gutzwiller resonating-valence-bond groundstate of the spin-1/2 antiferromagnetic Heisenberg chain with 1/r21superscript𝑟21/r^{2}1 / italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT exchange, Phys. Rev. Lett. 60, 635 (1988).
  6. B. S. Shastry, Exact solution of an s=1/2𝑠12s=1/2italic_s = 1 / 2 Heisenberg antiferromagnetic chain with long-ranged interactions, Phys. Rev. Lett. 60, 639 (1988).
  7. V. I. Inozemtsev, On the connection between the one-dimensional s=1/2𝑠12s=1/2italic_s = 1 / 2 Heisenberg chain and Haldane–Shastry model, J. Stat. Phys. 59, 1143 (1990).
  8. F. Haldane, Physics of the ideal semion gas: spinons and quantum symmetries of the integrable Haldane–Shastry spin chain, in Correlation effects in low-dimensional electron systems, Vol. 118, edited by A. Okiji and N. Kawakami (Springer, 1994) cond-mat/9401001 .
  9. A. P. Polychronakos, Generalized statistics in one dimension, in Topological aspects of low dimensional systems: Session LXIX. 7–31 July 1998 (2002) p. 415, hep-th/9902157 .
  10. A. Rej, Review of AdS/CFT integrability, Chapter I.3: Long-range spin chains, Lett. Math. Phys. 99, 85 (2012), 1012.3985 .
  11. F. D. M. Haldane, “Spinon gas” description of the s=1/2𝑠12s=1/2italic_s = 1 / 2 Heisenberg chain with inverse-square exchange: Exact spectrum and thermodynamics, Phys. Rev. Lett. 66, 1529 (1991).
  12. D. Bernard, V. Pasquier, and D. Serban, Spinons in conformal field theory, Nucl. Phys. B 428, 612 (1994), hep-th/9404050 .
  13. D. Uglov, The trigonometric counterpart of the Haldane–Shastry model (1995), hep-th/9508145 .
  14. J. Lamers, Resurrecting the partially isotropic Haldane–Shastry model, Phys. Rev. B 97, 214416 (2018), 1801.05728 .
  15. See Supplemental Material for more details.
  16. V. Pasquier and H. Saleur, Common structures between finite systems and conformal field theories through quantum groups, Nucl. Phys. B 330, 523 (1990).
  17. C. M. Bender, Making sense of non-hermitian hamiltonians, Rep. Prog. Phys. 70, 947 (2007), hep-th/0703096 .
  18. A. Dei and A. Sfondrini, Integrable spin chain for stringy Wess–Zumino–Witten models, JHEP 2018, 1, 1806.00422 .
  19. M. R. Gaberdiel, R. Gopakumar, and B. Nairz, Beyond the tensionless limit: Integrability in the symmetric orbifold, 2312.13288 (2023).
  20. C. Korff and R. Weston, PT symmetry on the lattice: the quantum group invariant XXZ spin chain, J. Phys. A: Math. Theor. 40, 8845 (2007), math-ph/0703085 .
  21. C. Korff, Turning the quantum group invariant XXZ spin-chain hermitian: a conjecture on the invariant product, J. Phys. A: Math. Theor. 41, 194013 (2008), 0709.3631 .
  22. C. Korff, PT-invariance and representations of the Temperley–Lieb algebra on the unit circle, in Proc. RAQIS’07, edited by L. Frappat and E. Ragoucy (2007) p. 99, 0712.2205 .
  23. R. Klabbers and J. Lamers, How coordinate Bethe ansatz works for Inozemtsev model, Commun. Math. Phys. 390, 827 (2022), 2009.14513 .
  24. V. Schomerus and H. Saleur, The G⁢L⁢(1|1)𝐺𝐿conditional11GL(1|1)italic_G italic_L ( 1 | 1 ) WZW-model: From supergeometry to logarithmic CFT, Nucl. Phys. B 734, 221 (2006), hep-th/0510032 .
  25. T. Creutzig and D. Ridout, Logarithmic conformal field theory: beyond an introduction, J. Phys. A: Math. Theor. 46, 494006 (2013).
  26. A. V. Razumov and Y. G. Stroganov, Spin chains and combinatorics, J. Phys. A: Math. Gen. 34, 3185 (2001), cond-mat/0012141 .
  27. R. Klabbers and J. Lamers, The deformed Inozemtsev spin chain, 2306.13066 (2023).
  28. M. Fowler and J. A. Minahan, Invariants of the Haldane–Shastry s⁢u⁢(n)𝑠𝑢𝑛su(n)italic_s italic_u ( italic_n ) chain, Phys. Rev. Lett. 70, 2325 (1993), cond-mat/9208016 .
  29. J. C. Talstra and F. D. M. Haldane, Integrals of motion of the Haldane–Shastry model, J. Phys. A: Math. Gen. 28, 2369 (1995), cond-mat/9411065 .
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 2 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube