Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Stochastic Thermodynamics at the Quantum-Classical Boundary: A Self-Consistent Framework Based on Adiabatic-Response Theory (2404.10118v2)

Published 15 Apr 2024 in cond-mat.stat-mech and quant-ph

Abstract: Microscopic thermal machines promise to play an important role in future quantum technologies. Making such devices widely applicable will require effective strategies to channel their output into easily accessible storage systems like classical degrees of freedom. Here, we develop a self-consistent theoretical framework that makes it possible to model such quantum-classical hybrid devices in a thermodynamically consistent manner. Our approach is based on the assumption that the quantum part of the device is subject to strong decoherence and dissipation induced by a thermal reservoir. Due to the ensuing separation of time scales between slowly evolving classical and fast relaxing quantum degrees of freedom, the dynamics of the hybrid system can be described by means of adiabatic-response theory. We show that, upon including fluctuations in a minimally consistent way, the resulting equations of motion can be equipped with a first and second law, both on the ensemble level and on the level of individual trajectories of the classical part of the system, where thermodynamic quantities like heat and work become stochastic variables. As an application of our theory, we work out a physically transparent model of a quantum-classical hybrid engine, whose working system consists of a chain of Rydberg atoms, which is confined in an optical cavity and driven by periodic temperature variations. We demonstrate through numerical simulations that the engine can sustain periodic oscillations of a movable mirror, which acts as a classical load, against external friction and extract the full distributions of input heat and output work. By making the statistics of thermodynamic processes in quantum-classical hybrid systems accessible without the need to further specify a measurement protocol, our work contributes to bridging the long-standing gap between classical and quantum stochastic thermodynamics.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (68)
  1. R. Kosloff and A. Levy, Quantum heat engines and refrigerators: Continuous devices, Annu. Rev. Phys. Chem. 65, 365 (2014).
  2. S. Vinjanampathy and J. Anders, Quantum thermodynamics, Contemp. Phys. 57, 545 (2016).
  3. V. Mukherjee and U. Divakaran, Many-body quantum thermal machines, J. Phys.: Condens. Matter 33, 454001 (2021).
  4. N. M. Myers, O. Abah, and S. Deffner, Quantum thermodynamic devices: From theoretical proposals to experimental reality, AVS Quantum Sci. 4 (2022a).
  5. A. Ü. Hardal and Ö. E. Müstecaplıoğlu, Superradiant quantum heat engine, Sci. Rep. 5, 12953 (2015).
  6. R. Uzdin, Coherence-induced reversibility and collective operation of quantum heat machines via coherence recycling, Phys. Rev. Appl. 6, 024004 (2016).
  7. J. Jaramillo, M. Beau, and A. del Campo, Quantum supremacy of many-particle thermal machines, New J. Phys. 18, 075019 (2016).
  8. Y.-H. Ma, S.-H. Su, and C.-P. Sun, Quantum thermodynamic cycle with quantum phase transition, Phys. Rev. E 96, 022143 (2017).
  9. W. Niedenzu and G. Kurizki, Cooperative many-body enhancement of quantum thermal machine power, New J. Phys. 20, 113038 (2018).
  10. C. L. Latune, I. Sinayskiy, and F. Petruccione, Thermodynamics from indistinguishability: Mitigating and amplifying the effects of the bath, Phys. Rev. Res. 1, 033192 (2019).
  11. N. M. Myers and S. Deffner, Bosons outperform fermions: The thermodynamic advantage of symmetry, Phys. Rev. E 101, 012110 (2020).
  12. F. Carollo, K. Brandner, and I. Lesanovsky, Nonequilibrium many-body quantum engine driven by time-translation symmetry breaking, Phys. Rev. Lett. 125, 240602 (2020b).
  13. T. Fogarty and T. Busch, A many-body heat engine at criticality, Quantum Sci. Technol. 6, 015003 (2020).
  14. N. M. Myers, J. McCready, and S. Deffner, Quantum heat engines with singular interactions, Symmetry 13 (2021).
  15. J. Li, E. Y. Sherman, and A. Ruschhaupt, Quantum heat engine based on a spin-orbit- and Zeeman-coupled Bose-Einstein condensate, Phys. Rev. A 106, L030201 (2022).
  16. P. J. Paulino, I. Lesanovsky, and F. Carollo, Nonequilibrium thermodynamics and power generation in open quantum optomechanical systems, Phys. Rev. A 108, 023516 (2023).
  17. M. A. Macovei, Performance of the collective three-level quantum thermal engine, Phys. Rev. A 105, 043708 (2022).
  18. D. Kolisnyk and G. Schaller, Performance boost of a collective qutrit refrigerator, Phys. Rev. Appl. 19, 034023 (2023).
  19. B. Yadin, B. Morris, and K. Brandner, Thermodynamics of permutation-invariant quantum many-body systems: A group-theoretical framework, Phys. Rev. Res. 5, 033018 (2023).
  20. U. Marzolino, Quantum thermochemical engines, Phys. Rev. Appl. 21, 034003 (2024).
  21. A. d. Campo, J. Goold, and M. Paternostro, More bang for your buck: Super-adiabatic quantum engines, Scientific reports 4, 6208 (2014).
  22. H. J. D. Miller and M. Mehboudi, Geometry of work fluctuations versus efficiency in microscopic thermal machines, Phys. Rev. Lett. 125, 260602 (2020).
  23. K. Brandner and K. Saito, Thermodynamic geometry of microscopic heat engines, Phys. Rev. Lett. 124, 040602 (2020).
  24. J. Eglinton and K. Brandner, Geometric bounds on the power of adiabatic thermal machines, Phys. Rev. E 105, L052102 (2022).
  25. R. Xu, A numerical method to find the optimal thermodynamic cycle in microscopic heat engine, J. Stat. Phys. 184, 29 (2021).
  26. I. Khait, J. Carrasquilla, and D. Segal, Optimal control of quantum thermal machines using machine learning, Phys. Rev. Res. 4, L012029 (2022).
  27. P. A. Erdman and F. Noé, Identifying optimal cycles in quantum thermal machines with reinforcement-learning, npj Quantum Inf. 8, 1 (2022).
  28. J. Liu and D. Segal, Coherences and the thermodynamic uncertainty relation: Insights from quantum absorption refrigerators, Phys. Rev. E 103, 032138 (2021).
  29. M. Gerry, N. Kalantar, and D. Segal, Bounds on fluctuations for ensembles of quantum thermal machines, J. Phys. A 55, 104005 (2022).
  30. A. Levy, L. Diósi, and R. Kosloff, Quantum flywheel, Phys. Rev. A 93, 052119 (2016).
  31. S. Seah, S. Nimmrichter, and V. Scarani, Work production of quantum rotor engines, New J. Phys. 20, 043045 (2018).
  32. H. Leitch, K. Hammam, and G. De Chiara, Thermodynamics of hybrid quantum rotor devices, Phys. Rev. E 109, 024108 (2024).
  33. P. Talkner, E. Lutz, and P. Hänggi, Fluctuation theorems: Work is not an observable, Phys. Rev. E 75, 050102 (2007).
  34. M. Campisi, P. Hänggi, and P. Talkner, Colloquium: Quantum fluctuation relations: Foundations and applications, Rev. Mod. Phys. 83, 771 (2011).
  35. P. Talkner and P. Hänggi, Aspects of quantum work, Phys. Rev. E 93, 022131 (2016).
  36. W. Niedenzu, M. Huber, and E. Boukobza, Concepts of work in autonomous quantum heat engines, Quantum 3, 195 (2019).
  37. P. Strasberg and M. G. Díaz, Classical quantum stochastic processes, Phys. Rev. A 100, 022120 (2019).
  38. T. N. Sherry and E. C. G. Sudarshan, Interaction between classical and quantum systems: A new approach to quantum measurement. I, Phys. Rev. D 18, 4580 (1978).
  39. T. N. Sherry and E. C. G. Sudarshan, Interaction between classical and quantum systems: A new approach to quantum measurement. II. Theoretical considerations, Phys. Rev. D 20, 857 (1979).
  40. W. Boucher and J. Traschen, Semiclassical physics and quantum fluctuations, Phys. Rev. D 37, 3522 (1988).
  41. C.-I. Kuo and L. H. Ford, Semiclassical gravity theory and quantum fluctuations, Phys. Rev. D 47, 4510 (1993).
  42. A. Anderson, Quantum backreaction on ”classical” variables, Phys. Rev. Lett. 74, 621 (1995).
  43. O. V. Prezhdo and V. V. Kisil, Mixing quantum and classical mechanics, Phys. Rev. A 56, 162 (1997).
  44. L. Diósi and J. J. Halliwell, Coupling classical and quantum variables using continuous quantum measurement theory, Phys. Rev. Lett. 81, 2846 (1998).
  45. J. Caro and L. L. Salcedo, Impediments to mixing classical and quantum dynamics, Phys. Rev. A 60, 842 (1999).
  46. L. Diósi, N. Gisin, and W. T. Strunz, Quantum approach to coupling classical and quantum dynamics, Phys. Rev. A 61, 022108 (2000).
  47. R. Kapral, Progress in the theory of mixed quantum-classical dynamics, Annu. Rev. Phys. Chem. 57, 129 (2006).
  48. L. L. Salcedo, Statistical consistency of quantum-classical hybrids, Phys. Rev. A 85, 022127 (2012).
  49. L. Diósi, Hybrid quantum-classical master equations, Phys. Scr. 2014, 014004 (2014).
  50. R. Kapral, Quantum dynamics in open quantum-classical systems, J. Phys.: Condens. Matter 27, 073201 (2015).
  51. J. Oppenheim and Z. Weller-Davies, Path integrals for classical-quantum dynamics, arXiv:2301.04677  (2023).
  52. I. Layton, J. Oppenheim, and Z. Weller-Davies, A healthier semi-classical dynamics, arXiv:2208.11722  (2022).
  53. L. Diósi, Hybrid completely positive Markovian quantum-classical dynamics, Phys. Rev. A 107, 062206 (2023).
  54. A. D. B. Manjarres, M. Reginatto, and S. Ulbricht, Three statistical descriptions of classical systems and their extensions to hybrid quantum-classical systems, arXiv:2403.07738  (2024).
  55. L. D’Alessio and A. Polkovnikov, Emergent Newtonian dynamics and the geometric origin of mass, Ann. Phys. 345, 141 (2014).
  56. Q. Zhang and B. Wu, General approach to quantum-classical hybrid systems and geometric forces, Phys. Rev. Lett. 97, 190401 (2006).
  57. V. Cavina, A. Mari, and V. Giovannetti, Slow dynamics and thermodynamics of open quantum systems, Phys. Rev. Lett. 119, 050601 (2017).
  58. U. Seifert, Stochastic thermodynamics: principles and perspectives, Eur. Phys. J. B 64, 423 (2008).
  59. U. Seifert, Stochastic thermodynamics, fluctuation theorems and molecular machines, Rep. Prog. Phys. 75, 126001 (2012).
  60. U. Seifert, Stochastic thermodynamics: From principles to the cost of precision, Physica 504, 176 (2018).
  61. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Cavity optomechanics, Rev. Mod. Phys. 86, 1391 (2014).
  62. C. S. Adams, J. D. Pritchard, and J. P. Shaffer, Rydberg atom quantum technologies, J. Phys. B 53, 012002 (2019).
  63. R. Kubo, M. Toda, and N. Hashitsume, Statistical physics II: nonequilibrium statistical mechanics, Vol. 31 (Springer Science & Business Media, 2012).
  64. E. H. Lieb, Convex trace functions and the Wigner-Yanase-Dyson conjecture, Adv. in Math. 11, 267 (1973).
  65. H. Spohn, Entropy production for quantum dynamical semigroups, J. Math. Phys. 19, 1227 (1978).
  66. V. Holubec, An exactly solvable model of a stochastic heat engine: optimization of power, power fluctuations and efficiency, J. Stat. Mech. 2014, P05022 (2014).
  67. R. Kapral, Surface hopping from the perspective of quantum–classical Liouville dynamics, Chem. Phys. 481, 77 (2016).
  68. C. W. Gardiner et al., Handbook of stochastic methods, Vol. 3 (springer Berlin, 1985).

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.