Papers
Topics
Authors
Recent
2000 character limit reached

Guaranteed Completion of Complex Tasks via Temporal Logic Trees and Hamilton-Jacobi Reachability (2404.08334v1)

Published 12 Apr 2024 in eess.SY, cs.RO, and cs.SY

Abstract: In this paper, we present an approach for guaranteeing the completion of complex tasks with cyber-physical systems (CPS). Specifically, we leverage temporal logic trees constructed using Hamilton-Jacobi reachability analysis to (1) check for the existence of control policies that complete a specified task and (2) develop a computationally-efficient approach to synthesize the full set of control inputs the CPS can implement in real-time to ensure the task is completed. We show that, by checking the approximation directions of each state set in the temporal logic tree, we can check if the temporal logic tree suffers from the "leaking corner issue," where the intersection of reachable sets yields an incorrect approximation. By ensuring a temporal logic tree has no leaking corners, we know the temporal logic tree correctly verifies the existence of control policies that satisfy the specified task. After confirming the existence of control policies, we show that we can leverage the value functions obtained through Hamilton-Jacobi reachability analysis to efficiently compute the set of control inputs the CPS can implement throughout the deployment time horizon to guarantee the completion of the specified task. Finally, we use a newly released Python toolbox to evaluate the presented approach on a simulated driving task.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. K. P. Wabersich, A. J. Taylor, J. J. Choi, K. Sreenath, C. J. Tomlin, A. D. Ames, and M. N. Zeilinger, “Data-Driven Safety Filters: Hamilton-Jacobi Reachability, Control Barrier Functions, and Predictive Methods for Uncertain Systems,” IEEE Control Systems Magazine, vol. 43, no. 5, pp. 137–177, 2023.
  2. S. Bansal, M. Chen, S. Herbert, and C. J. Tomlin, “Hamilton-Jacobi Reachability: A Brief Overview and Recent Advances,” no. arXiv:1709.07523, sep 2017. [Online]. Available: http://arxiv.org/abs/1709.07523
  3. A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier function based quadratic programs for safety critical systems,” IEEE Transactions on Automatic Control, vol. 62, no. 8, pp. 3861–3876, 2016.
  4. J. J. Choi, D. Lee, K. Sreenath, C. J. Tomlin, and S. L. Herbert, “Robust control barrier–value functions for safety-critical control,” in 2021 60th IEEE Conference on Decision and Control (CDC).   IEEE, 2021, pp. 6814–6821.
  5. M. Althoff, “An introduction to CORA 2015,” in Proc. of the Workshop on Applied Verification for Continuous and Hybrid Systems, 2015.
  6. N. Kochdumper, F. Gruber, B. Schürmann, V. Gaßmann, M. Klischat, and M. Althoff, “AROC: A Toolbox for Automated Reachset Optimal Controller Synthesis,” in Proc. of the 24th International Conference on Hybrid Systems: Computation and Control, 2021.
  7. B. Yordanov, J. Tumova, I. Cerna, J. Barnat, and C. Belta, “Temporal logic control of discrete-time piecewise affine systems,” IEEE Transactions on Automatic Control, vol. 57, no. 6, pp. 1491–1504, 2011.
  8. S. Karaman, R. G. Sanfelice, and E. Frazzoli, “Optimal control of mixed logical dynamical systems with linear temporal logic specifications,” in 2008 47th IEEE Conference on Decision and Control.   IEEE, 2008, pp. 2117–2122.
  9. T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Receding Horizon Temporal Logic Planning,” IEEE Transactions on Automatic Control, vol. 57, no. 11, pp. 2817–2830, 2012.
  10. A. Ulusoy and C. Belta, “Receding horizon temporal logic control in dynamic environments,” The International Journal of Robotics Research, vol. 33, no. 12, pp. 1593–1607, 2014.
  11. Y. Gao, A. Abate, F. J. Jiang, M. Giacobbe, L. Xie, and K. H. Johansson, “Temporal Logic Trees for Model Checking and Control Synthesis of Uncertain Discrete-time Systems,” IEEE Transactions on Automatic Control, p. 1, 2021.
  12. M. Chen, Q. Tam, S. C. Livingston, and M. Pavone, “Signal temporal logic meets reachability: Connections and applications,” in International Workshop on the Algorithmic Foundations of Robotics.   Springer, 2018, pp. 581–601.
  13. L. Lindemann and D. V. Dimarogonas, “Control barrier functions for signal temporal logic tasks,” IEEE control systems letters, vol. 3, no. 1, pp. 96–101, 2018.
  14. P. Yu, Y. Gao, F. J. Jiang, K. H. Johansson, and D. V. Dimarogonas, “Online Control Synthesis for Uncertain Systems under Signal Temporal Logic Specifications,” arXiv e-prints, p. arXiv:2103.09091, mar 2023.
  15. F. J. Jiang, Y. Gao, L. Xie, and K. H. Johansson, “Ensuring safety for vehicle parking tasks using Hamilton-Jacobi reachability analysis,” in 2020 59th IEEE Conference on Decision and Control (CDC), 2020, pp. 1416–1421.
  16. ——, “Human-Centered Design for Safe Teleoperation of Connected Vehicles,” in IFAC Conference on Cyber-Physical & Human-Systems, Shanghai, China, 2020.
  17. C. He, Z. Gong, M. Chen, and S. Herbert, “Efficient and Guaranteed Hamilton-Jacobi Reachability via Self-Contained Subsystem Decomposition and Admissible Control Sets,” IEEE Control Systems Letters, 2023.
  18. G. De Giacomo and M. Y. Vardi, “Linear temporal logic and linear dynamic logic on finite traces,” in IJCAI’13 Proceedings of the Twenty-Third international joint conference on Artificial Intelligence.   Association for Computing Machinery, 2013, pp. 854–860.
  19. P. Yu, Y. Gao, F. J. Jiang, K. H. Johansson, and D. V. Dimarogonas, “Online control synthesis for uncertain systems under signal temporal logic specifications,” The International Journal of Robotics Research, 2023.
  20. M. Chen, S. L. Herbert, M. S. Vashishtha, S. Bansal, and C. J. Tomlin, “Decomposition of Reachable Sets and Tubes for a Class of Nonlinear Systems,” IEEE Transactions on Automatic Control, vol. 63, no. 11, pp. 3675–3688, 2018.
  21. D. Lee, M. Chen, and C. J. Tomlin, “Removing Leaking Corners to Reduce Dimensionality in Hamilton-Jacobi Reachability,” in 2019 International Conference on Robotics and Automation (ICRA), 2019, pp. 9320–9326.
  22. M. Bui, G. Giovanis, M. Chen, and A. Shriraman, “OptimizedDP: An Efficient, User-friendly Library For Optimal Control and Dynamic Programming,” no. arXiv:2204.05520, apr 2022. [Online]. Available: http://arxiv.org/abs/2204.05520
  23. J. F. Fisac, M. Chen, C. J. Tomlin, and S. S. Sastry, “Reach-avoid problems with time-varying dynamics, targets and constraints,” in Proceedings of the 18th International Conference on Hybrid Systems: Computation and Control.   Seattle Washington: ACM, apr 2015, pp. 11–20. [Online]. Available: https://dl.acm.org/doi/10.1145/2728606.2728612
  24. E. N. Barron and H. Ishii, “The Bellman equation for minimizing the maximum cost,” Nonlinear Analysis: Theory, Methods & Applications, vol. 13.
  25. E. N. Barron, “Differential games maximum cost,” Nonlinear Analysis: Theory, Methods & Applications, vol. 14, jun.
  26. Y.-H. Lai, Y. Chi, Y. Hu, J. Wang, C. H. Yu, Y. Zhou, J. Cong, and Z. Zhang, “HeteroCL: A Multi-Paradigm Programming Infrastructure for Software-Defined Reconfigurable Computing,” Int’l Symp. on Field-Programmable Gate Arrays (FPGA), 2019.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.