Papers
Topics
Authors
Recent
2000 character limit reached

Self-supervised Dataset Distillation: A Good Compression Is All You Need

Published 11 Apr 2024 in cs.CV and cs.AI | (2404.07976v1)

Abstract: Dataset distillation aims to compress information from a large-scale original dataset to a new compact dataset while striving to preserve the utmost degree of the original data informational essence. Previous studies have predominantly concentrated on aligning the intermediate statistics between the original and distilled data, such as weight trajectory, features, gradient, BatchNorm, etc. In this work, we consider addressing this task through the new lens of model informativeness in the compression stage on the original dataset pretraining. We observe that with the prior state-of-the-art SRe$2$L, as model sizes increase, it becomes increasingly challenging for supervised pretrained models to recover learned information during data synthesis, as the channel-wise mean and variance inside the model are flatting and less informative. We further notice that larger variances in BN statistics from self-supervised models enable larger loss signals to update the recovered data by gradients, enjoying more informativeness during synthesis. Building on this observation, we introduce SC-DD, a simple yet effective Self-supervised Compression framework for Dataset Distillation that facilitates diverse information compression and recovery compared to traditional supervised learning schemes, further reaps the potential of large pretrained models with enhanced capabilities. Extensive experiments are conducted on CIFAR-100, Tiny-ImageNet and ImageNet-1K datasets to demonstrate the superiority of our proposed approach. The proposed SC-DD outperforms all previous state-of-the-art supervised dataset distillation methods when employing larger models, such as SRe$2$L, MTT, TESLA, DC, CAFE, etc., by large margins under the same recovery and post-training budgets. Code is available at https://github.com/VILA-Lab/SRe2L/tree/main/SCDD/.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.