Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 98 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 165 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 29 tok/s Pro
2000 character limit reached

Accounting for the Quantum Capacitance of Graphite in Constant Potential Molecular Dynamics Simulations (2404.07848v1)

Published 11 Apr 2024 in cond-mat.mtrl-sci

Abstract: Molecular dynamics simulations at a constant electric potential are an essential tool to study electrochemical processes, providing microscopic information on the structural, thermodynamic, and dynamical properties. Despite the numerous advances in the simulation of electrodes, they fail to accurately represent the electronic structure of materials such as graphite. In this work, we introduce a simple parameterization method that allows to tune the metallicity of the electrode based on a quantum chemistry calculation of the density of states. As a first illustration, we study the interface between graphite electrodes and two different liquid electrolytes, an aqueous solution of NaCl and a pure ionic liquid, at different applied potentials. We show that the simulations reproduce qualitatively the experimentally-measured capacitance; in particular, they yield a minimum of capacitance at the point of zero charge, which is due to the quantum capacitance contribution. An analysis of the structure of the adsorbed liquids allows to understand why the ionic liquid displays a lower capacitance despite its large ionic concentration. In addition to its relevance for the important class of carbonaceous electrodes, this method can be applied to any electrode materials (e.g. 2D materials, conducting polymers, etc), thus enabling molecular simulation studies of complex electrochemical devices in the future.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (47)
  1. M. Salanne, B. Rotenberg, K. Naoi, K. Kaneko, P.-L. Taberna, C. P. Grey, B. Dunn, and P. Simon, “Efficient Storage Mechanisms for Building Better Supercapacitors,” Nat. Energy 1, 16070 (2016).
  2. I. Ledezma-Yanez, W. D. Z. Wallace, P. Sebastián-Pascual, V. Climent, J. M. Feliu, and M. T. Koper, “Interfacial water reorganization as a ph-dependent descriptor of the hydrogen evolution rate on platinum electrodes,” Nat. Energy 2, 17031 (2017).
  3. G. Pace, A. Esau del Rio Castillo, A. Lamperti, S. Lauciello, and F. Bonaccorso, “2d materials-based electrochemical triboelectric nanogenerators,” Adv. Mater. 35, 2211037 (2023).
  4. A. A. Kornyshev, “Double-layer in ionic liquids: paradigm change?” J. Phys. Chem. B 111, 5545–5557 (2007).
  5. J. Wu, “Understanding the electric double-layer structure, capacitance, and charging dynamics,” Chem. Rev. 122, 10821–10859 (2022).
  6. G. Jeanmairet, B. Rotenberg, and M. Salanne, “Microscopic simulations of electrochemical double-layer capacitors,” Chem. Rev. 122, 10860–10898 (2022).
  7. C. Pean, B. Daffos, B. Rotenberg, P. Levitz, M. Haefele, P.-L. Taberna, P. Simon, and M. Salanne, “Confinement, desolvation, and electrosorption effects on the diffusion of ions in nanoporous carbon electrodes,” J. Am. Chem. Soc. 137, 12627 (2015).
  8. A. Groß, “Challenges for ab initio molecular dynamics simulations of electrochemical interfaces,” Curr. Opin. Electrochem. 40, 101345 (2023).
  9. A. Groß and S. Sakong, “Ab initio simulations of water/metal interfaces,” Chem. Rev. 122, 10746–10776 (2022).
  10. S. Surendralal, M. Rodorova, M. W. Finnis, and J. Neugebauer, “First-principles approach to model electrochemical reactions: Understanding the fundamental mechanisms behind mg corrosion,” Phys. Rev. Lett. 120, 246801 (2018).
  11. C.-Y. Li, J.-B. Le, Y.-H. Wang, S. Chen, Z.-L. Yang, J.-F. Li, J. Cheng, and Z.-Q. Tian, “In situ probing electrified interfacial water structures at atomically flat surfaces,” Nat. Mater. 18, 697–701 (2019).
  12. X.-Y. Li, X.-F. Jin, X.-H. Yang, X. Wang, J.-B. Le, and J. Cheng, “Molecular understanding of the helmholtz capacitance difference between cu(100) and graphene electrodes,” J. Chem. Phys. 158, 084701 (2023).
  13. X. Qin, T. Vegge, and H. A. Hansen, “Cation-coordinated inner-sphere CO22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT electroreduction at au–water interfaces,” J. Am. Chem. Soc. 145, 1897–1905 (2023).
  14. H. Ers, M. Lembinen, M. Mišin, A. P. Seitsonen, M. V. Fedorov, and V. B. Ivaništšev, “Graphene–ionic liquid interfacial potential drop from density functional theory-based molecular dynamics simulations,” J. Phys. Chem. C 124, 19548–19555 (2020).
  15. J. I. Siepmann and M. Sprik, “Influence of Surface-Topology and Electrostatic Potential on Water Electrode Systems,” J. Chem. Phys. 102, 511–524 (1995).
  16. S. K. Reed, O. J. Lanning, and P. A. Madden, “Electrochemical Interface Between an Ionic Liquid and a Model Metallic Electrode,” J. Chem. Phys. 126, 084704 (2007).
  17. H. Gerischer, “An interpretation of the double layer capacity of graphite electrodes in relation to the density of states at the Fermi level,” J. Phys. Chem. 89, 4249–4251 (1985).
  18. A. A. Kornyshev, N. B. Luque, and W. Schmickler, “Differential capacitance of ionic liquid interface with graphite: the story of two double layers,” J. Solid State Electrochem. 18, 1345–1349 (2014).
  19. A. J. Pak, E. Paek, and G. S. Hwang, “Relative contributions of quantum and double layer capacitance toward the supercapacitor performance of carbon nanotubes in an ionic liquid,” Phys. Chem. Chem. Phys. 15, 19741–19747 (2013).
  20. T. Mo, Z. Wang, L. Zeng, M. Chen, A. A. Kornyshev, M. Zhang, Y. Zhao, and G. Feng, “Energy storage mechanism in supercapacitors with porous graphdiynes: Effects of pore topology and electrodemetallicity,” Adv. Mater. 35, 2301118 (2023).
  21. L. Scalfi, T. Dufils, K. G. Reeves, B. Rotenberg, and M. Salanne, “A semiclassical Thomas–Fermi model to tune the metallicity of electrodes in molecular simulations,” J. Chem. Phys. 153, 174704 (2020a).
  22. L. Scalfi and B. Rotenberg, “Microscopic origin of the effect of substrate metallicity on interfacial free energies,” Proc. Natl. Acad. Sci. U.S.A. 118, e210879118 (2021).
  23. J. Zhu, A. S. Childress, M. Karakaya, S. Dandeliya, A. Srivastava, Y. Lin, A. M. Rao, and R. Podila, “Defect-engineered graphene for high-energy- and high- power-density supercapacitor devices,” Adv. Mater. 28, 7185–7192 (2016).
  24. A. Coretti, C. Bacon, R. Berthin, A. Serva, L. Scalfi, I. Chubak, K. Goloviznina, M. Haefele, A. Marin-Laflèche, B. Rotenberg, S. Bonella, and M. Salanne, “MetalWalls: simulating electrochemical interfaces between polarizable electrolytes and metallic electrodes,” J. Chem. Phys. 157, 184801 (2022a).
  25. L. Gross, F. Mohn, N. Moll, P. Liljeroth, and G. Meyer, “The chemical structure of a molecule resolved by atomic force microscopy,” Science 325, 1110–1114 (2009).
  26. T. Binninger, “Piecewise nonlinearity and capacitance in the joint density functional theory of extended interfaces,” Phys. Rev. B 103, L161403 (2021).
  27. J. Comtet, A. Niguès, V. Kaiser, B. Coasne, L. Bocquet, and A. Siria, “Nanoscale capillary freezing of ionic liquids confined between metallic interfaces and the role of electronic screening,” Nat. Mater. 16, 634–639 (2017).
  28. L. Scalfi, D. T. Limmer, A. Coretti, S. Bonella, P. A. Madden, M. Salanne, and B. Rotenberg, “Charge fluctuations from molecular simulations in the constant-potential ensemble,” Phys. Chem. Chem. Phys. 22, 10480–10489 (2020b).
  29. T. R. Gingrich and M. Wilson, “On the ewald summation of gaussian charges for the simulation of metallic surfaces,” Chem. Phys. Lett. 500, 178–183 (2010).
  30. A. Coretti, C. Bacon, R. Berthin, A. Serva, L. Scalfi, I. Chubak, K. Goloviznina, M. Haefele, A. Marin-Laflèche, B. Rotenberg, S. Bonella, and M. Salanne, “Metalwalls: Simulating electrochemical interfaces between polarizable electrolytes and metallic electrodes,” J. Chem. Phys. 157, 184801 (2022b).
  31. A. A. H. Pádua, “Resolving Dispersion and Induction Components for Polarisable Molecular Simulations of Ionic Liquids,” J. Chem. Phys. 146, 204501 (2017).
  32. K. Goloviznina, J. N. Canongia Lopes, M. Costa Gomes, and A. A. H. Pádua, “Transferable, Polarizable Force Field for Ionic Liquids,” J. Chem. Theory Comput. 15, 5858–5871 (2019).
  33. O. Oll, T. Romann, C. Siimenson, and E. Lust, “Influence of chemical composition of electrode material on the differential capacitance characteristics of the ionic liquid||||electrode interface,” Electrochem. commun 82, 39–42 (2017).
  34. P. Iamprasertkun, W. Hirunpinyopas, A. Keerthi, B. Wang, B. Radha, M. A. Bissett, and R. A. W. Dryfe, “Capacitance of basal plane and edge-oriented highly ordered pyrolytic graphite: Specific ion effects,” J. Phys. Chem. Lett. 10, 617–623 (2019).
  35. J. B. Haskins and J. W. Lawson, “Evaluation of molecular dynamics simulation methods for ionic liquid electric double layers,” J. Chem. Phys. 144, 184707 (2016).
  36. P. H. L. Ferreira, A. M. Sampaio, and L. J. A. Siqueira, “Energy and power performances of binary mixtures of ionic liquids in planar and porous electrodes by molecular dynamics simulations,” Electrochimica Acta 410, 139982 (2022).
  37. H. He, J. Zhou, L. Yang, C. Liang, S. Xu, M. Chen, and T. Mo, “Accurately simulating electrical double layers structure and formation using all-atom scaled-charge force fields,” J. Mater. Chem. A , – (2024).
  38. Z. Hu, J. Vatamanu, O. Borodin, and D. Bedrov, “A molecular dynamics simulation study of the electric double layer and capacitance of [[[[bmim]]]][[[[pf6]]]] and [[[[bmim]]]][[[[bf4]]]] room temperature ionic liquids near charged surfaces,” Phys. Chem. Chem. Phys. 15, 14234–14247 (2013).
  39. E. Hayes, G. G. Warr, and R. Atkin, “At the interface: solvation and designing ionic liquids,” Phys. Chem. Chem. Phys. 12, 1709–1723 (2010).
  40. J. M. Black, D. Walters, A. Labuda, G. Feng, P. C. Hillesheim, S. Dai, P. T. Cummings, S. V. Kalinin, R. Proksch, and N. Balke, “Bias-dependent molecular-level structure of electrical double layer in ionic liquid on graphite,” Nano Lett. 13, 5954–5960 (2013).
  41. A. Serva, L. Scalfi, B. Rotenberg, and M. Salanne, “Effect of the metallicity on the capacitance of gold–aqueous sodium chloride interfaces,” J. Chem. Phys. 155, 044703 (2021).
  42. A. Limaye, D. Suvlu, and A. P. Willard, “Water molecules mute the dependence of the double-layer potential profile on ionic strength,” Faraday Discuss. 249, 267–288 (2024).
  43. S. Kondrat and A. A. Kornyshev, “Superionic State in Double-Layer Capacitors with Nanoporous Electrodes,” J. Phys.: Condens. Matter 23, 022201 (2011).
  44. S. Kondrat, G. Feng, F. Bresme, M. Urbakh, and A. A. Kornyshev, “Theory and simulations of ionic liquids in nanoconfinement,” Chem. Rev. 123, 6668–6715 (2023).
  45. R. Futamura, T. Iiyama, Y. Takasaki, Y. Gogotsi, M. J. Biggs, M. Salanne, J. Ségalini, P. Simon, and K. Kaneko, “Partial breaking of the coulombic ordering of ionic liquids confined in carbon nanopores,” Nat. Mater. 16, 1225–1232 (2017).
  46. M. Simoncelli, N. Ganfoud, A. Sene, M. Haefele, B. Daffos, P.-L. Taberna, M. Salanne, P. Simon, and B. Rotenberg, “Blue energy and desalination with nanoporous carbon electrodes: Capacitance from molecular simulations to continuous models,” Phys. Rev. X 8, 021024 (2018).
  47. T. Dufils, L. Knijff, Y. Shao, and C. Zhang, “PiNNwall: Heterogeneous electrode models from integrating machine learning and atomistic simulation,” J. Chem. Theory Comput. 19, 5199–5209 (2023).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 18 likes.