Promoting collective cooperation through temporal interactions
Abstract: Collective cooperation drives the dynamics of many natural, social, and economic phenomena, making understanding the evolution of cooperation with evolutionary game theory a central question of modern science. Although human interactions are best described as complex networks, current explorations are limited to static networks where interactions represented by network links are permanent and do not change over time. In reality, human activities often involve temporal interactions, where links are impermanent, and understanding the evolution of cooperation on such ubiquitous temporal networks is an open question. Here, we present a general framework for systematically analyzing how collective cooperation evolves on any temporal network, which unifies the study of evolutionary game dynamics with dynamic and static interactions. We show that the emergence of cooperation is facilitated by a simple rule of thumb: hubs (individuals with many social ties) should be temporally deprioritized in interactions. We further provide a quantitative metric capturing the priority of hubs, which we utilize to orchestrate the ordering of interactions to best promote cooperation on empirical temporal networks. Our findings unveil the fundamental advantages conferred by temporal interactions for promoting collective cooperation, which transcends the specific insights gleaned from studying traditional static snapshots.
- W. D. Hamilton, The genetical evolution of social behaviour, I, J. Theor. Biol. 7, 1 (1964a).
- W. D. Hamilton, The genetical evolution of social behaviour, II, J. Theor. Biol. 7, 17 (1964b).
- M. A. Nowak and R. M. May, Evolutionary games and spatial chaos, Nature 359, 826 (1992).
- J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics (Cambridge Univ. Press, 1998).
- K. Sigmund, The Calculus of Selfishness (Princeton Univ. Press, 2010).
- C. Hauert and M. Doebeli, Spatial structure often inhibits the evolution of cooperation in the snowdrift game, Nature 428, 643 (2004).
- E. Lieberman, C. Hauert, and M. A. Nowak, Evolutionary dynamics on graphs, Nature 433, 312 (2005).
- F. C. Santos and J. M. Pacheco, Scale-free networks provide a unifying framework for the emergence of cooperation, Phys. Rev. Lett. 95, 098104 (2005).
- H. Ohtsuki, M. A. Nowak, and J. M. Pacheco, Breaking the symmetry between interaction and replacement in evolutionary dynamics on graphs, Phys. Rev. Lett. 98, 108106 (2007).
- P. D. Taylor, T. Day, and G. Wild, Evolution of cooperation in a finite homogeneous graph, Nature 447, 469 (2007).
- F. C. Santos, M. D. Santos, and J. M. Pacheco, Social diversity promotes the emergence of cooperation in public goods games, Nature 454, 213 (2008).
- A. Szolnoki, M. Perc, and G. Szabó, Topology-independent impact of noise on cooperation in spatial public goods games, Phys. Rev. E 80, 056109 (2009).
- W. Maciejewski, F. Fu, and C. Hauert, Evolutionary game dynamics in populations with heterogenous structures, PLoS Comput. Biol. 10, e1003567 (2014).
- S. A. Levin, Collective cooperation: from ecological communities to global governance and back, in Unsolved Problems in Ecology (Princeton Univ. Press, 2020) pp. 311–317.
- G. Chen, Searching for best network topologies with optimal synchronizability: A brief review, IEEE/CAA J. Autom. Sin. 9, 573 (2022).
- A. McAvoy, B. Allen, and M. A. Nowak, Social goods dilemmas in heterogeneous societies, Nat. Hum. Behav. 4, 819 (2020).
- R. Ventura, Structural Inequality in Collaboration Networks, Philos. Sci. 90, 336 (2022).
- A. Paranjape, A. R. Benson, and J. Leskovec, Motifs in temporal networks, in Proceedings of the Tenth ACM International Conference on Web Search and Data Mining (ACM, 2017).
- J. Fournet and A. Barrat, Contact patterns among high school students, PLoS One 9, e107878 (2014).
- N. Masuda and R. Lambiotte, A Guide to Temporal Networks (World Scientific, 2016).
- N. Masuda, K. Klemm, and V. M. EguÃluz, Temporal networks: Slowing down diffusion by long lasting interactions, Phys. Rev. Lett. 111, 188701 (2013).
- E. Akçay, Collapse and rescue of cooperation in evolving dynamic networks, Nature Communications 9, 2692 (2018).
- J. T. Cox, Coalescing random walks and voter model consensus times on the torus in ZdsuperscriptZd\text{Z}^{\text{d}}Z start_POSTSUPERSCRIPT d end_POSTSUPERSCRIPT, Ann. Probab. , 1333 (1989).
- J. F. C. Kingman, The coalescent, Stochastic Process. Appl. 13, 235 (1982).
- A.-L. Barabási and R. Albert, Emergence of scaling in random networks, Science 286, 509 (1999).
- F. Débarre, C. Hauert, and M. Doebeli, Social evolution in structured populations, Nat. Commun. 5 (2014).
- P. Holme and B. J. Kim, Growing scale-free networks with tunable clustering, Phys. Rev. E 65, 026107 (2002).
- K.-I. Goh, B. Kahng, and D. Kim, Universal behavior of load distribution in scale-free networks, Phys. Rev. Lett. 87, 278701 (2001).
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.