Papers
Topics
Authors
Recent
Search
2000 character limit reached

Adiabatic State Preparation in a Quantum Ising Spin Chain

Published 11 Apr 2024 in cond-mat.quant-gas and quant-ph | (2404.07481v1)

Abstract: We report on adiabatic state preparation in the one-dimensional quantum Ising model using ultracold bosons in a tilted optical lattice. We prepare many-body ground states of controllable system sizes and observe enhanced fluctuations around the transition between paramagnetic and antiferromagnetic states, marking the precursor of quantum critical behavior. Furthermore, we find evidence for superpositions of domain walls and study their effect on the many-body ground state by measuring the populations of each spin configuration across the transition. These results shed new light on the effect of boundary conditions in finite-size quantum systems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (10)
  1. S. Sachdev, Quantum magnetism and criticality, Nature Physics 4, 173 (2008).
  2. P. Schauss, Quantum simulation of transverse ising models with rydberg atoms, Quantum Science and Technology 3, 023001 (2018).
  3. S. Sachdev, K. Sengupta, and S. M. Girvin, Mott insulators in strong electric fields, Phys. Rev. B 66, 075128 (2002).
  4. S. A. Owerre and J. Nsofini, Antiferromagnetic molecular nanomagnets with odd-numbered coupled spins, Europhysics Letters 110, 47002 (2015).
  5. Materials and methods are available as supplementary materials.
  6. U. C. Täuber, Phase transitions and scaling in systems far from equilibrium, Annual Review of Condensed Matter Physics 8, 185 (2017).
  7. J. Wu, L. Zhu, and Q. Si, Crossovers and critical scaling in the one-dimensional transverse-field Ising model, Phys. Rev. B 97, 245127 (2018).
  8. D. Sels and A. Polkovnikov, Minimizing irreversible losses in quantum systems by local counterdiabatic driving, Proceedings of the National Academy of Sciences 114, E3909 (2017).
  9. D. Sacco Shaikh, M. Sassetti, and N. Traverso Ziani, Parity-dependent quantum phase transition in the quantum Ising chain in a transverse field, Symmetry 14, 996 (2022).
  10. R. B. Sidje, Expokit: A software package for computing matrix exponentials, ACM Trans. Math. Softw. 24, 130–156 (1998).
Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.