Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 138 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Aluminium nanoparticle-based ultra-wideband high-performance polarizer (2404.06873v3)

Published 10 Apr 2024 in physics.optics, physics.app-ph, and physics.comp-ph

Abstract: The polarizer-based device industry is expanding quickly, requiring high-quality research on nanoscale wideband polarizers. Here, we investigated the possibility of utilizing Al dimer nanostructures on broad-band polarizers. Metals are always considered promising candidates for reflection-based polarizer development because of their high extinction ratio. This study proposes a nanoparticle polarizer comprised of semi-immersed Al nanodimers with a 200 nm radius on a CaF_2 substrate. Our proposed polarizer has effective polarization anisotropy in the near-infrared (NIR) and THz range. This study includes calculating performance parameters for the extraction of the proposed polarizer, including insertion loss, extinction ratio (ER), Mueller matrix values, and polarization ellipse diagram. The finite-difference time-domain (FDTD) simulation-based results suggested obtaining more than 55 dB extinction ratio for the 0.2 to 9 THz range. The average extinction ratio and insertion loss over the 1-1665 micrometer wavelength were 29.01 dB and ~1 dB, respectively. We have reviewed recent reports of similar nanoparticle and wire grid-based polarizers to evaluate our Al nanodimer-based polarizer and performed a comparative analysis. The idea of Al dimer and the insight gained from the results extracted from the rigorous simulation report suggested a great opportunity for developing micro-scale metallic wideband polarizers.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (36)
  1. E. H. Land, “Some aspects of the development of sheet polarizers,” J. Opt. Soc. Am., vol. 41, pp. 957–963, Dec 1951.
  2. Y. V. Bludov, M. I. Vasilevskiy, and N. M. Peres, “Tunable graphene-based polarizer,” Journal of Applied Physics, vol. 112, no. 8, p. 084320, 2012.
  3. V. Zhupanov, I. Kozlov, V. Fedoseev, P. Konotopov, M. Trubetskov, and A. Tikhonravov, “Production of brewster angle thin film polarizers using a ZrO2/SiO2 pair of materials,” Applied Optics, vol. 56, no. 4, pp. C30–C34, 2017.
  4. W. Wu, P. Han, M. Shi, F. Su, and F. Wu, “Design and performance analysis of a single-unit polarizing beam-splitting prism based on negative refraction in a uniaxial crystal,” Appl. Opt., vol. 58, pp. 7063–7066, Sep 2019.
  5. M. C. George, J. Bergquist, B. Wang, R. Petrova, H. Li, and E. Gardner, “An improved wire grid polarizer for thermal infrared applications,” in Advanced Fabrication Technologies for Micro/Nano Optics and Photonics VI, vol. 8613, pp. 261–267, SPIE, 2013.
  6. M. A. Faqeerzada, A. Rahman, G. Kim, E. Park, R. Joshi, S. Lohumi, and B.-K. Cho, “Prediction of moisture contents in green peppers using hyperspectral imaging based on a polarized lighting system,” Korean Journal of Agricultural Science, vol. 47, pp. 995–1010, 12 2020.
  7. Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nature Photonics, vol. 5, no. 7, p. 411–415, 2011.
  8. J. Zheng, X. He, P. Beckett, X. Sun, Z. Cai, W. Zhang, X. Liu, and X. Hao, “Dichroic circular polarizers based on plasmonics for polarization imaging applications,” Nanomaterials, vol. 11, no. 8, p. 2145, 2021.
  9. Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, “Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography,” Applied physics letters, vol. 77, no. 7, pp. 927–929, 2000.
  10. A. Ferraro, D. C. Zografopoulos, M. Missori, M. Peccianti, R. Caputo, and R. Beccherelli, “Flexible terahertz wire grid polarizer with high extinction ratio and low loss,” Opt. Lett., vol. 41, pp. 2009–2012, May 2016.
  11. Z. Zhao, A. J. Corso, and M. G. Pelizzo, “Nanowire grid reflecting polarizers for ultraviolet applications,” IEEE Photonics Journal, vol. 12, no. 6, pp. 1–11, 2020.
  12. Y. J. Shin, Y. K. Wu, K. T. Lee, J. G. Ok, and L. J. Guo, “Fabrication and encapsulation of a short-period wire grid polarizer with improved viewing angle by the angled-evaporation method,” Advanced Optical Materials, vol. 1, no. 11, pp. 863–868, 2013.
  13. T. Weber, H.-J. Fuchs, H. Schmidt, E.-B. Kley, and A. Tünnermann, “Wire-grid polarizer for the uv spectral region,” in Advanced Fabrication Technologies for Micro/Nano Optics and Photonics II, vol. 7205, pp. 9–16, SPIE, 2009.
  14. M. Zaman, Design of Submicron Structured Guided-Mode-Resonance Near-Infrared Polarizer. PhD thesis, University of Arkansas, Fayetteville, May 2020.
  15. Y. Fan, J. Chu, R. Zhang, Z. Liu, J. Liu, C. Guan, and Z. Zhang, “Broadband Vis–NIR circular polarizer with cascaded aluminum wire-grid,” Advanced Materials Technologies, vol. 8, no. 7, p. 2201394, 2023.
  16. R. Hokari, K. Takakuwa, K. Shiomoto, G. Kuwano, and K. Kurihara, “Development and analysis of a nano-triangular wave-shaped polarizer,” Scientific Reports, vol. 13, p. 13387, Aug 2023.
  17. A. Zubair, D. E. Tsentalovich, C. C. Young, M. S. Heimbeck, H. O. Everitt, M. Pasquali, and J. Kono, “Carbon nanotube fiber terahertz polarizer,” Applied Physics Letters, vol. 108, p. 141107, 04 2016.
  18. K. Zhou, G. Simpson, X. Chen, L. Zhang, and I. Bennion, “High extinction ratio in-fiber polarizers based on 45° tilted fiber bragg gratings,” Opt. Lett., vol. 30, pp. 1285–1287, Jun 2005.
  19. J. R. Middendorf, J. S. Cetnar, J. Owsley, and E. R. Brown, “High fill-factor substrate-based wire-grid polarizers with high extinction ratios,” IEEE Transactions on Terahertz Science and Technology, vol. 4, no. 3, pp. 376–382, 2014.
  20. J. Kang, H.-S. Yun, H.-I. Jang, J. Kim, J. H. Park, and J.-Y. Lee, “Solution-processed aluminum nanogratings for wire grid polarizers,” Advanced Optical Materials, vol. 6, no. 14, p. 1800205, 2018.
  21. Y. Zhang, Q. Liu, H. Mundoor, Y. Yuan, and I. I. Smalyukh, “Metal nanoparticle dispersion, alignment, and assembly in nematic liquid crystals for applications in switchable plasmonic color filters and E-Polarizers,” ACS Nano, vol. 9, no. 3, pp. 3097–3108, 2015.
  22. D. Sarker, P. P. Nakti, M. I. Tahmid, M. A. Z. Mamun, and A. Zubair, “Terahertz polarizer based on tunable surface plasmon in graphene nanoribbon,” Opt. Express, vol. 29, pp. 42713–42725, Dec 2021.
  23. H. Zhang, M. Zhai, J. Sun, Y. Zhou, D. Jia, T. Liu, and Y. Zhang, “Discrimination between spheres and spheroids in a detection system for single particles based on polarization characteristics,” Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 187, pp. 62–75, 2017.
  24. Y. Intaravanne and X. Chen, “Recent advances in optical metasurfaces for polarization detection and engineered polarization profiles,” Nanophotonics, vol. 9, no. 5, pp. 1003–1014, 2020.
  25. B. Bai, F. Yang, and Z. Zhou, “Demonstration of an on-chip TE-pass polarizer using a silicon hybrid plasmonic grating,” Photon. Res., vol. 7, pp. 289–293, Mar 2019.
  26. K. K. Gopalan, D. Rodrigo, B. Paulillo, K. K. Soni, and V. Pruneri, “Ultrathin yttria-stabilized zirconia as a flexible and stable substrate for infrared nano-optics,” Advanced Optical Materials, vol. 7, no. 2, p. 1800966, 2019.
  27. TYDEX, “CaF2 (calcium fluoride),” 2023.
  28. N. Akhtary and A. Zubair, “Light trapping using a dimer of spherical nanoparticles based on titanium nitride for plasmonic solar cells,” Opt. Mater. Express, vol. 13, pp. 2759–2774, Oct 2023.
  29. A. E.-S. Abd-Elkader, E. ELDamarawy, M. F. O. Hameed, and S. S. Obayya, “Ultra-compact SOS-based bi-metallic TM-pass polarizer,” Optical and Quantum Electronics, vol. 54, no. 4, p. 257, 2022.
  30. N. Tarjanyi, M. Uhricik, D. Kacik, and P. Palcek, “High load-induced birefringence of PMMA investigated in VIS/NIR spectral range,” Advances in Electrical and Electronic Engineering, vol. 17, no. 3, 2019.
  31. J. Jeon, B. S. Chun, Y. Seo, M. Kim, H. Kim, Y. Kim, J. S. Kim, and S. J. Lee, “Improving infra-red polarized imaging efficiency in a bilayer wire-grid polarizer,” Nanoscale Adv., vol. 5, pp. 633–639, 2023.
  32. S. G. Moiseev, “Thin-film polarizer made of heterogeneous medium with uniformly oriented silver nanoparticles,” Applied Physics A, vol. 103, pp. 775–777, Jun 2011.
  33. J. Kim, S. Cho, and M. Y. Jeong, “A study on optical characteristic of nano metal grid polarizer film with different deposition thickness,” Journal of the Microelectronics and Packaging Society, vol. 22, no. 1, pp. 63–67, 2015.
  34. I. Yamada, K. Takano, M. Hangyo, M. Saito, and W. Watanabe, “Terahertz wire-grid polarizers with micrometer-pitch Al gratings,” Opt. Lett., vol. 34, pp. 274–276, Feb 2009.
  35. G. Farmer, J. Abraham, C. Littler, A. J. Syllaios, and U. Philipose, “Growth of highly-ordered metal nanoparticle arrays in the dimpled pores of an anodic aluminum oxide template,” Nanomaterials, vol. 12, no. 22, 2022.
  36. T. Inc, “Thorlabs - LPNIRA050 ϕitalic-ϕ\phiitalic_ϕ12.5 mm unmounted linear polarizer, 1000 - 3000 nm.”
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.