Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 157 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 397 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Private Wasserstein Distance (2404.06787v2)

Published 10 Apr 2024 in cs.LG and cs.AI

Abstract: Wasserstein distance is a key metric for quantifying data divergence from a distributional perspective. However, its application in privacy-sensitive environments, where direct sharing of raw data is prohibited, presents significant challenges. Existing approaches, such as Differential Privacy and Federated Optimization, have been employed to estimate the Wasserstein distance under such constraints. However, these methods often fall short when both accuracy and security are required. In this study, we explore the inherent triangular properties within the Wasserstein space, leading to a novel solution named TriangleWad. This approach facilitates the fast computation of the Wasserstein distance between datasets stored across different entities, ensuring that raw data remain completely hidden. TriangleWad not only strengthens resistance to potential attacks but also preserves high estimation accuracy. Through extensive experiments across various tasks involving both image and text data, we demonstrate its superior performance and significant potential for real-world applications.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.