Papers
Topics
Authors
Recent
2000 character limit reached

Quantum stochastic thermodynamics in the mesoscopic-leads formulation (2404.06426v1)

Published 9 Apr 2024 in quant-ph, cond-mat.mes-hall, and cond-mat.stat-mech

Abstract: We introduce a numerical method to sample the distributions of charge, heat, and entropy production in open quantum systems coupled strongly to macroscopic reservoirs, with both temporal and energy resolution and beyond the linear-response regime. Our method exploits the mesoscopic-leads formulation, where macroscopic reservoirs are modeled by a finite collection of modes that are continuously damped toward thermal equilibrium by an appropriate Gorini-Kossakowski-Sudarshan-Lindblad master equation. Focussing on non-interacting fermionic systems, we access the time-resolved full counting statistics through a trajectory unraveling of the master equation. We show that the integral fluctuation theorems for the total entropy production, as well as the martingale and uncertainty entropy production, hold. Furthermore, we investigate the fluctuations of the dissipated heat in finite-time information erasure. Conceptually, our approach extends the continuous-time trajectory description of quantum stochastic thermodynamics beyond the regime of weak system-environment coupling.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (49)
  1. U. Seifert, Reports on Progress in Physics 75, 126001 (2012).
  2. S. Ciliberto, Physical Review X 7, 021051 (2017).
  3. U. Seifert, Physica A: Statistical Mechanics and its Applications Lecture Notes of the 14th International Summer School on Fundamental Problems in Statistical Physics, 504, 176 (2018).
  4. U. Seifert, Physical Review Letters 95, 040602 (2005).
  5. J. L. Lebowitz and H. Spohn, Journal of Statistical Physics 95, 333 (1999).
  6. C. Jarzynski, Annual Review of Condensed Matter Physics 2, 329 (2011).
  7. J. M. Horowitz, Physical Review E 85 (2012), 10.1103/PhysRevE.85.031110.
  8. F. W. J. Hekking and J. P. Pekola, Physical Review Letters 111, 093602 (2013).
  9. G. Manzano and R. Zambrini, AVS Quantum Science  (2022), 10.1116/5.0079886.
  10. K. Sekimoto, Stochastic Energetics | SpringerLink (Springer International Publishing).
  11. S. Deffner and E. Lutz, Physical Review Letters 107, 140404 (2011).
  12. Y. Morikuni and H. Tasaki, Journal of Statistical Physics 143, 1 (2011).
  13. A. Bartolotta and S. Deffner, Physical Review X 8, 011033 (2018).
  14. P. Talkner and P. Hänggi, Reviews of Modern Physics 92, 041002 (2020).
  15. Y. M. Blanter and M. Büttiker, Physics Reports 336, 1 (2000).
  16. M. Moskalets and M. Büttiker, Phys. Rev. B 70, 245305 (2004).
  17. M. Moskalets, Phys. Rev. Lett. 112, 206801 (2014).
  18. E. Aurell, Phys. Rev. E 97, 062117 (2018).
  19. K. Funo and H. T. Quan, Phys. Rev. E 98, 012113 (2018a).
  20. K. Funo and H. T. Quan, Phys. Rev. Lett. 121, 040602 (2018b).
  21. N. Anto-Sztrikacs and D. Segal, New Journal of Physics 23, 063036 (2021).
  22. O. Diba, H. J. D. Miller, J. Iles-Smith,  and A. Nazir, “Quantum work statistics at strong reservoir coupling,”  (2023), arxiv:2302.08395 [quant-ph] .
  23. A. Lacerda, M. J. Kewming, M. Brenes, C. Jackson, S. R. Clark, M. T. Mitchison,  and J. Goold, “Entropy production in the mesoscopic-leads formulation of quantum thermodynamics,”  (2023a), arXiv:2312.12513 [quant-ph] .
  24. A. A. Dzhioev and D. S. Kosov, The Journal of Chemical Physics 134, 044121 (2011).
  25. S. Ajisaka and F. Barra, Physical Review B 87, 195114 (2013).
  26. A. Imamoglu, Physical Review A 50, 3650 (1994).
  27. B. M. Garraway, Physical Review A 55, 4636 (1997a).
  28. B. M. Garraway, Physical Review A 55, 2290 (1997b).
  29. G. Lindblad, Communications in Mathematical Physics 48, 119 (1976).
  30. H. M. Wiseman and G. J. Milburn, Quantum Measurement and Control (Cambridge University Press, Cambridge, 2009).
  31. T. Van Vu and K. Saito, Phys. Rev. Lett. 128, 010602 (2022).
  32. A. Rolandi and M. Perarnau-Llobet, “Finite-time Landauer principle at strong coupling,”  (2022).
  33. A. M. Lyapunov and J. A. Walker, J. Appl. Mech. 61, 226 (1994).
  34. M. Coppola, D. Karevski,  and G. T. Landi, “Conditional no-jump dynamics of non-interacting quantum chains,”  (2023).
  35. S. Bravyi, Quantum Information & Computation 5, 216 (2005).
  36. G. C. Wick, Physical Review 80, 268 (1950).
  37. A. Levy and R. Kosloff, EPL (Europhysics Letters) 107, 20004 (2014).
  38. D. J. Evans and D. J. Searles, Advances in Physics 51, 1529 (2002).
  39. M. Campisi, Journal of Physics A: Mathematical and Theoretical 47, 245001 (2014).
  40. G. E. Crooks, Physical Review E 60, 2721 (1999).
  41. J. Surace and L. Tagliacozzo, SciPost Physics Lecture Notes , 54 (2022).
  42. D. A. Abanin and L. S. Levitov, Physical Review Letters 94, 186803 (2005).
  43. I. Klich, “Full Counting Statistics: An elementary derivation of Levitov’s formula,”  (2002).
  44. M. Esposito and C. Van den Broeck, Phys. Rev. Lett. 104, 090601 (2010).
  45. S. Dago and L. Bellon, Phys. Rev. Lett. 128, 070604 (2022).
  46. H. J. Carmichael and D. F. Walls, Journal of Physics A: Mathematical, Nuclear and General 6, 1552 (1973).
  47. F. Barra, Scientific Reports 5, 14873 (2015).
  48. A. S. Trushechkin and I. V. Volovich, Europhysics Letters 113, 30005 (2016).
  49. M. T. Mitchison and M. B. Plenio, New Journal of Physics 20, 033005 (2018).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 4 tweets with 19 likes about this paper.