Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 105 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Kimi K2 193 tok/s Pro
2000 character limit reached

Coherence and imaginarity of quantum states (2404.06210v1)

Published 9 Apr 2024 in quant-ph, math-ph, and math.MP

Abstract: Baumgratz, Cramer and Plenio established a rigorous framework (BCP framework) for quantifying the coherence of quantum states [\href{http://dx.doi.org/10.1103/PhysRevLett.113.140401}{Phys. Rev. Lett. 113, 140401 (2014)}]. In BCP framework, a quantum state is called incoherent if it is diagonal in the fixed orthonormal basis, and a coherence measure should satisfy some conditions. For a fixed orthonormal basis, if a quantum state $\rho $ has nonzero imaginary part, then $\rho $ must be coherent. How to quantitatively characterize this fact? In this work, we show that any coherence measure $C$ in BCP framework has the property $C(\rho )-C($Re$\rho )\geq 0$ if $C$ is invariant under state complex conjugation, i.e., $C(\rho )=C(\rho {\ast })$, here $\rho {\ast }$ is the conjugate of $\rho ,$ Re$\rho $ is the real part of $\rho .$ If $C$ does not satisfy $C(\rho )=C(\rho {\ast }),$ we can define a new coherence measure $C{\prime }(\rho )=\frac{1}{2}[C(\rho )+C(\rho {\ast })]$ such that $C{\prime }(\rho )=C{\prime }(\rho {\ast }).$ We also establish some similar results for bosonic Gaussian states.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information (Cambridge university press, 2010).
  2. A. Hickey and G. Gour, Quantifying the imaginarity of quantum mechanics, Journal of Physics A: Mathematical and Theoretical 51, 414009 (2018).
  3. H. Zhu, Hiding and masking quantum information in complex and real quantum mechanics, Phys. Rev. Res. 3, 033176 (2021).
  4. J. Xu, Imaginarity of gaussian states, Phys. Rev. A 108, 062203 (2023).
  5. M. Horodecki and J. Oppenheim, (quantumness in the context of) resource theories, International Journal of Modern Physics B 27, 1345019 (2013).
  6. E. Chitambar and G. Gour, Quantum resource theories, Rev. Mod. Phys. 91, 025001 (2019).
  7. C.-S. Yu, Quantum coherence via skew information and its polygamy, Phys. Rev. A 95, 042337 (2017).
  8. H. Zhao and C.-S. Yu, Coherence measure in terms of the tsallis relative α𝛼\alphaitalic_α entropy, Scientific reports 8, 299 (2018).
  9. J. Xu, l1subscript𝑙1l_{1}italic_l start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT norm of coherence is not equal to its convex roof quantifier, Journal of Physics A: Mathematical and Theoretical 55, 145302 (2022).
  10. S. L. Braunstein and P. van Loock, Quantum information with continuous variables, Rev. Mod. Phys. 77, 513 (2005).
  11. S. Olivares, Quantum optics in the phase space: a tutorial on gaussian states, The European Physical Journal Special Topics 203, 3 (2012).
  12. A. Serafini, Quantum continuous variables: a primer of theoretical methods (CRC press, 2017).
  13. J. Xu, Quantifying coherence of gaussian states, Phys. Rev. A 93, 032111 (2016).
  14. J. Huh, Multimode bogoliubov transformation and husimi’s q-function, Journal of Physics: Conference Series 1612, 012015 (2020).
  15. J. Xu, Coherence of quantum gaussian channels, Physics Letters A 387, 127028 (2021).
  16. S. Du and Z. Bai, Conversion of gaussian states under incoherent gaussian operations, Phys. Rev. A 105, 022412 (2022).
  17. S. Du and Z. Bai, Incoherent gaussian equivalence of m𝑚mitalic_m-mode gaussian states, Phys. Rev. A 107, 012407 (2023).
  18. J. Williamson, On the algebraic problem concerning the normal forms of linear dynamical systems, American journal of mathematics 58, 141 (1936).
  19. T. Hiroshima, Additivity and multiplicativity properties of some gaussian channels for gaussian inputs, Phys. Rev. A 73, 012330 (2006).
  20. R. Bhatia and T. Jain, Variational principles for symplectic eigenvalues, Canadian Mathematical Bulletin 64, 553 (2021).
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets