Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A tight upper bound on the number of non-zero weights of a constacyclic code (2305.06505v1)

Published 11 May 2023 in cs.IT and math.IT

Abstract: For a simple-root $\lambda$-constacyclic code $\mathcal{C}$ over $\mathbb{F}q$, let $\langle\rho\rangle$ and $\langle\rho,M\rangle$ be the subgroups of the automorphism group of $\mathcal{C}$ generated by the cyclic shift $\rho$, and by the cyclic shift $\rho$ and the scalar multiplication $M$, respectively. Let $N_G(\mathcal{C}\ast)$ be the number of orbits of a subgroup $G$ of automorphism group of $\mathcal{C}$ acting on $\mathcal{C}\ast=\mathcal{C}\backslash{0}$. In this paper, we establish explicit formulas for $N{\langle\rho\rangle}(\mathcal{C}\ast)$ and $N_{\langle\rho,M\rangle}(\mathcal{C}\ast)$. Consequently, we derive a upper bound on the number of nonzero weights of $\mathcal{C}$. We present some irreducible and reducible $\lambda$-constacyclic codes, which show that the upper bound is tight. A sufficient condition to guarantee $N_{\langle\rho\rangle}(\mathcal{C}\ast)=N_{\langle\rho,M\rangle}(\mathcal{C}\ast)$ is presented.

Citations (3)

Summary

We haven't generated a summary for this paper yet.