Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
94 tokens/sec
Gemini 2.5 Pro Premium
55 tokens/sec
GPT-5 Medium
18 tokens/sec
GPT-5 High Premium
24 tokens/sec
GPT-4o
103 tokens/sec
DeepSeek R1 via Azure Premium
93 tokens/sec
GPT OSS 120B via Groq Premium
462 tokens/sec
Kimi K2 via Groq Premium
254 tokens/sec
2000 character limit reached

Streamlined Transmission: A Semantic-Aware XR Deployment Framework Enhanced by Generative AI (2404.06182v1)

Published 9 Apr 2024 in cs.NI

Abstract: In the era of 6G, featuring compelling visions of digital twins and metaverses, Extended Reality (XR) has emerged as a vital conduit connecting the digital and physical realms, garnering widespread interest. Ensuring a fully immersive wireless XR experience stands as a paramount technical necessity, demanding the liberation of XR from the confines of wired connections. In this paper, we first introduce the technologies applied in the wireless XR domain, delve into their benefits and limitations, and highlight the ongoing challenges. We then propose a novel deployment framework for a broad XR pipeline, termed "GeSa-XRF", inspired by the core philosophy of Semantic Communication (SemCom) which shifts the concern from "how" to transmit to "what" to transmit. Particularly, the framework comprises three stages: data collection, data analysis, and data delivery. In each stage, we integrate semantic awareness to achieve streamlined transmission and employ Generative Artificial Intelligence (GAI) to achieve collaborative refinements. For the data collection of multi-modal data with differentiated data volumes and heterogeneous latency requirements, we propose a novel SemCom paradigm based on multi-modal fusion and separation and a GAI-based robust superposition scheme. To perform a comprehensive data analysis, we employ multi-task learning to perform the prediction of field of view and personalized attention and discuss the possible preprocessing approaches assisted by GAI. Lastly, for the data delivery stage, we present a semantic-aware multicast-based delivery strategy aimed at reducing pixel level redundant transmissions and introduce the GAI collaborative refinement approach. The performance gain of the proposed GeSa-XRF is preliminarily demonstrated through a case study.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (15)
  1. W. Yang, H. Du, Z. Q. Liew, W. Y. B. Lim, Z. Xiong, D. Niyato, X. Chi, X. S. Shen, and C. Miao, “Semantic Communications for Future Internet: Fundamentals, Applications, and Challenges,” IEEE Communications Surveys & Tutorials, vol. 25, no. 1, pp. 213–250, 2023.
  2. C. Wang, Y. Li, F. Gao, D. Deng, J. Xu, Y. Liu, and W. Wang, “Adaptive semantic-bit communication for extended reality interactions,” IEEE Journal of Selected Topics in Signal Processing, 2023.
  3. Z. Qin, X. Tao, J. Lu, W. Tong, and G. Y. Li, “Semantic communications: Principles and challenges,” arXiv preprint arXiv:2201.01389, 2021.
  4. E. Grassucci, S. Barbarossa, and D. Comminiello, “Generative semantic communication: Diffusion models beyond bit recovery,” arXiv preprint arXiv:2306.04321, 2023.
  5. A. D. Raha, M. S. Munir, A. Adhikary, Y. Qiao, and C. S. Hong, “Generative AI-driven Semantic Communication Framework for NextG Wireless Network,” arXiv preprint arXiv:2310.09021, 2023.
  6. W. Yang, Z. Xiong, Y. Yuan, and T. Q. Quek, “Semantic change driven generative semantic communication framework,” arXiv preprint arXiv:2309.12775, 2023.
  7. Z. Qin, T. Zhao, F. Li, and X. Tao, “Survey of research on multimodal semantic communication,” Journal on Communication, vol. 44, no. 5, pp. 28–41, 2023.
  8. R. Zhang, K. Xiong, H. Du, D. Niyato, J. Kang, X. Shen, and H. V. Poor, “Generative ai-enabled vehicular networks: Fundamentals, framework, and case study,” arXiv preprint arXiv:2304.11098, 2023.
  9. M. Darabi, V. Jamali, L. Lampe, and R. Schober, “Hybrid puncturing and superposition scheme for joint scheduling of URLLC and eMBB traffic,” IEEE Communications Letters, vol. 26, no. 5, pp. 1081–1085, 2022.
  10. J. Li, L. Han, C. Zhang, Q. Li, and Z. Liu, “Spherical convolution empowered viewport prediction in 360osuperscript360o360^{\rm o}360 start_POSTSUPERSCRIPT roman_o end_POSTSUPERSCRIPT video multicast with limited FoV feedback,” ACM Transactions on Multimedia Computing, Communications and Applications, vol. 19, no. 1, pp. 1–23, 2023.
  11. L. Zhong, X. Chen, C. Xu, Y. Ma, M. Wang, Y. Zhao, and G.-M. Muntean, “A multi-user cost-efficient crowd-assisted VR content delivery solution in 5G-and-beyond heterogeneous networks,” IEEE Transactions on Mobile Computing, vol. 22, no. 8, pp. 4405–4421, 2023.
  12. X. Mu and Y. Liu, “Exploiting semantic communication for non-orthogonal multiple access,” IEEE Journal on Selected Areas in Communications, vol. 41, no. 8, pp. 2563–2576, 2023.
  13. H. Du, J. Liu, D. Niyato, J. Kang, Z. Xiong, J. Zhang, and D. I. Kim, “Attention-aware resource allocation and QoE analysis for metaverse xURLLC services,” IEEE Journal on Selected Areas in Communications, vol. 41, no. 7, pp. 2158–2175, 2023.
  14. R. M. Samant, M. R. Bachute, S. Gite, and K. Kotecha, “Framework for deep learning-based language models using multi-task learning in natural language understanding: A systematic literature review and future directions,” IEEE Access, vol. 10, pp. 17 078–17 097, 2022.
  15. Y. Xie, M. Yuan, B. Dong, and Q. Li, “Diffusion model for generative image denoising,” arXiv preprint arXiv:2302.02398, 2023.
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.