Papers
Topics
Authors
Recent
Search
2000 character limit reached

StoryImager: A Unified and Efficient Framework for Coherent Story Visualization and Completion

Published 9 Apr 2024 in cs.CV | (2404.05979v1)

Abstract: Story visualization aims to generate a series of realistic and coherent images based on a storyline. Current models adopt a frame-by-frame architecture by transforming the pre-trained text-to-image model into an auto-regressive manner. Although these models have shown notable progress, there are still three flaws. 1) The unidirectional generation of auto-regressive manner restricts the usability in many scenarios. 2) The additional introduced story history encoders bring an extremely high computational cost. 3) The story visualization and continuation models are trained and inferred independently, which is not user-friendly. To these ends, we propose a bidirectional, unified, and efficient framework, namely StoryImager. The StoryImager enhances the storyboard generative ability inherited from the pre-trained text-to-image model for a bidirectional generation. Specifically, we introduce a Target Frame Masking Strategy to extend and unify different story image generation tasks. Furthermore, we propose a Frame-Story Cross Attention Module that decomposes the cross attention for local fidelity and global coherence. Moreover, we design a Contextual Feature Extractor to extract contextual information from the whole storyline. The extensive experimental results demonstrate the excellent performance of our StoryImager. The code is available at https://github.com/tobran/StoryImager.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.