About the Moments of the Generalized Ulam Problem (2404.05860v4)
Abstract: Given $\pi \in S_n$, let $Z_{n,k}(\pi)=\sum_{1\leq i_1<\dots<i_k\leq n} \mathbf{1}({ \pi_{i_1}<\dots<\pi_{i_k}}$ denote the number of increasing subsequences of length $k$. Consider the "generalized Ulam problem," studying the distribution of $Z_{n,k}$ for general $k$ and $n$. For the 2nd moment, Ross Pinsky initiated a combinatorial study by considering a pair of subsequences $i{(r)}_1<\dots<i{(r)}_k$ for $r \in {1,2}$, and conditioning on the size of the intersection $j = |{i_1{(1)},\dots,i{(1)}_k} \cap {i{(2)}_1,\dots,i{(2)}_k}|$. We obtain the exact large deviation rate function for $\mathbf{E}[Z_{n,k} Z_{n,\ell}]$ in the asymptotic regime $k\sim \kappa n{1/2}$, $\ell \sim \lambda n{1/2}$ as $n \to \infty$, for $\kappa,\lambda \in (0,\infty)$. This uses multivariate generating function techniques, as found in the textbook of Pemantle and Wilson. The requisite generating function enumerates pairs of up-right paths in $d=2$, which both end at $(k,\ell)$ with a given number of intersections. We also evaluate the analogous generating function for pairs of $(+\boldsymbol{i},+\boldsymbol{j},+\boldsymbol{k})$ paths in $d=3$, which both end at $(k,\ell,m)$, which has some utility in calculating the 3rd moment. Finally, we consider a simpler problem involving partitions instead of permutations, where all moments are calculable and the replica symmetric ansatz can be stated if not proved.
- Jinho Baik, Percy Deift and Kurt Johansson. On the distribution of the length of the longest increasing subsequence of random permutations. J. Amer. Math. Soc. 12, no. 4, 1119–1178 (1999).
- Rodney J. Baxter. Partition function of the eight-vertex lattice model. Ann. Phys. 70 193–228 (1972).
- J. Phys. A: Math. General, 35, no. 20, 4443 (2002), 10 pages.
- Charalambos A. Charalambides. Enumerative Combinatorics. CRC Press, Taylor & Francis group, Boca Raton, FL, 2002.
- Large Deviation Techniques and Applications. Springer-Verlag, Berlin, 2009.
- Analytic Combinatorics. Cambridge University Press, Cambridge, UK, 2009.
- H, M. Hammersley. A fee seedlings of research. In: Proc. 6th Berkeley symp. math. statist. and probability, vol.1, pp. 345–394. University of California Press, California 1972.
- The number of increasing subsequences of a random permutation. J. Combin. Theory A 31, 1–20 (1981).
- B. F. Logan and L. A. Shepp. A variational problem for random Young tableaux. Advances in Math. 26 206–222 (1977).
- Henry McKean. Probability: the classical limit theorems. Cambridge University Press, Cambridge, UK, 2014.
- Analytic Combinatorics in Several Variables. Cambridge University Press, New York, USA, 2013.
- Ross G. Pinsky. Law of large numbers for increasing subsequences of random permutations. Random Structures Algorithms 29, no. 3, 277–295 (2006).
- Ross G. Pinsky. When the law of large numbers fails for increasing subsequences of random permutations. Ann. Probab. 35, no. 2, 758–772 (2007).
- Georg Pólya.  Uber eine Aufgabader Wahrscheinichkeitsrechnung betreffend die Irrfahrt im Straßennetz. Math. Ann. 84, no. 1–2, 149–160 (1921).
- Phase uniqueness for the Mallows measure on permutations. J. Math. Phys. 59 063301 (2018).
- J. Michael Steele. Probability theory and combinatorial optimization. Society for Industrial and Applied Mathematics, Philadelphia, PA, 1997.
- Level-spacing distributions and the Airy kernel. Comm. Math. Phys. 159, 151–174 (1993).
- A. M. Vershik and S. V. Kerov. Asymptotics of the Plancherel measure of the symmetric group and the limiting form of Young tables. Soviet Math. Dokl., 18, 527–531 (1977).
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.