Experimental observation of a time rondeau crystal: Temporal Disorder in Spatiotemporal Order (2404.05620v1)
Abstract: Our understanding of phases of matter relies on symmetry breaking, one example being water ice whose crystalline structure breaks the continuous translation symmetry of space. Recently, breaking of time translation symmetry was observed in systems not in thermal equilibrium. The associated notion of time crystallinity has led to a surge of interest, raising the question about the extent to which highly controllable quantum simulators can generate rich and tunable temporal orders, beyond the conventional classification of order in static systems. Here, we investigate different kinds of partial temporal orders, stabilized by non-periodic yet structured drives, which we call rondeau order. Using a ${13}$C-nuclear-spin diamond quantum simulator, we report the first experimental observation of a -- tunable degree of -- short-time disorder in a system exhibiting long-time stroboscopic order. This is based on a novel spin control architecture that allows us to implement a family of drives ranging from structureless via structured random to quasiperiodic and periodic drives. Leveraging a high throughput read-out scheme, we continuously observe the spin polarization over 105 pulses to probe rondeau order, with controllable lifetimes exceeding 4 seconds. Using the freedom in the short-time temporal disorder of rondeau order, we show the capacity to encode information in the response of observables. Our work broadens the landscape of observed nonequilibrium temporal order, paving the way for new applications harnessing driven quantum matter.
- P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, 1995).
- A. J. Leggett, Rev. Mod. Phys. 76, 999 (2004).
- X. G. Wen and Q. Niu, Phys. Rev. B 41, 9377 (1990).
- F. Wilczek, Phys. Rev. Lett. 109, 160401 (2012).
- P. Bruno, Phys. Rev. Lett. 111, 070402 (2013).
- H. Watanabe and M. Oshikawa, Phys. Rev. Lett. 114, 251603 (2015).
- K. Sacha and J. Zakrzewski, Reports on Progress in Physics 81, 016401 (2017).
- S. Autti, V. B. Eltsov, and G. E. Volovik, Phys. Rev. Lett. 120, 215301 (2018).
- A. Pizzi, J. Knolle, and A. Nunnenkamp, Phys. Rev. Lett. 123, 150601 (2019).
- V. Khemani, R. Moessner, and S. Sondhi, arXiv preprint arXiv:1910.10745 (2019).
- P. Frey and S. Rachel, Science advances 8, eabm7652 (2022).
- M. McGinley, S. Roy, and S. A. Parameswaran, Phys. Rev. Lett. 129, 090404 (2022).
- P. T. Dumitrescu, R. Vasseur, and A. C. Potter, Phys. Rev. Lett. 120, 070602 (2018).
- H. Zhao, F. Mintert, and J. Knolle, Phys. Rev. B 100, 134302 (2019).
- D. V. Else, W. W. Ho, and P. T. Dumitrescu, Phys. Rev. X 10, 021032 (2020b).
- H. Zhao, J. Knolle, and R. Moessner, Phys. Rev. B 108, L100203 (2023).
- J. Rovny, R. L. Blum, and S. E. Barrett, Phys. Rev. Lett. 120, 180603 (2018).
- J.-P. Allouche and J. Shallit, in Sequences and their Applications: Proceedings of SETA’98 (Springer, 1999) pp. 1–16.
- S. Nandy, A. Sen, and D. Sen, Phys. Rev. X 7, 031034 (2017).
- To remove the influence of prethermal decay on the Fourier transform, we consider the digitized signal of the micromotion: positive (negative) values of the signal S>0𝑆0S>0italic_S > 0 (S<0𝑆0S<0italic_S < 0) are mapped to +11+1+ 1(−11-1- 1).
- B. Lathi, Modern digital and analog communication systems (Oxford university press, 2010).
- F. Iemini, R. Fazio, and A. Sanpera, arXiv preprint arXiv:2306.03927 (2023).
- T. Simula, N. Kjærgaard, and T. Pfau, Topological transport of a classical droplet in a lattice of time (2024), arXiv:2403.06500 [cond-mat.mes-hall] .
- Y. Avishai and D. Berend, Phys. Rev. B 45, 2717 (1992).
- D. A. Abanin, W. De Roeck, and F. m. c. Huveneers, Phys. Rev. Lett. 115, 256803 (2015).
- T. Mori, T. Kuwahara, and K. Saito, Phys. Rev. Lett. 116, 120401 (2016).
- N. Goldman and J. Dalibard, Phys. Rev. X 4, 031027 (2014).
- A. Eckardt and E. Anisimovas, New journal of physics 17, 093039 (2015).
- A. Pizzi, A. Nunnenkamp, and J. Knolle, Phys. Rev. Lett. 127, 140602 (2021).
- I. Martin, G. Refael, and B. Halperin, Phys. Rev. X 7, 041008 (2017).
- P. J. D. Crowley, I. Martin, and A. Chandran, Phys. Rev. B 99, 064306 (2019).
- F. Nathan, I. Martin, and G. Refael, Phys. Rev. Res. 4, 043060 (2022).
- W. Chen, P. D. Sacramento, and R. Mondaini, Phys. Rev. B 109, 054202 (2024).
- P. Weinberg and M. Bukov, SciPost Phys. 2, 003 (2017).
- P. Weinberg and M. Bukov, SciPost Phys. 7, 020 (2019).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.