Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Dark matter phenomenology and phase transition dynamics of the next to minimal composite Higgs model with dilaton (2404.05332v1)

Published 8 Apr 2024 in hep-ph and astro-ph.HE

Abstract: In this paper, we conduct a comprehensive study of the Next-to-Minimal Composite Higgs Model (NMCHM) extended with a dilaton field $\chi$ (denoted as NMCHM$_\chi$). A pseudo-Nambu-Goldstone boson (pNGB) $\eta$, resulting from the SO(6)$\to$SO(5) breaking, serves as a dark matter (DM) candidate. The inclusion of the dilaton field is helpful for evading the stringent constraints from dark matter direct detection, as it allows for an accidental cancellation between the amplitudes of DM-nucleon scattering, an outcome of the mixing between the dilaton and Higgs fields. The presence of the dilaton field also enriches the phase transition patterns in the early universe. We identify two types of phase transitions: (i) a 1-step phase transition, where the chiral symmetry and electroweak symmetry breaking (EWSB) occur simultaneously, and (ii) a 2-step phase transition, where the chiral symmetry breaking transition takes place first, followed by a second phase transition corresponding to EWSB. Since the first-order phase transitions can be strong due to supercooling in our model, we also examine the stochastic background of gravitational waves generated by these phase transitions. We find that these gravitational waves hold promise for detection in future space-based gravitational wave experiments, such as LISA, Taiji, BBO, and DECIGO.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (72)
  1. H. Georgi and D. B. Kaplan, “Composite Higgs and Custodial SU(2),” Phys. Lett. B 145, 216–220 (1984).
  2. K. Agashe, R. Contino, and A. Pomarol, “The Minimal composite Higgs model,” Nucl. Phys. B 719, 165–187 (2005).
  3. K. Agashe and R. Contino, “The Minimal composite Higgs model and electroweak precision tests,” Nucl. Phys. B 742, 59–85 (2006).
  4. G. Cacciapaglia and F. Sannino, “Fundamental Composite (Goldstone) Higgs Dynamics,” JHEP 04, 111 (2014).
  5. C. Csáki, S. Lombardo, and O. Telem, “TASI Lectures on Non-supersymmetric BSM Models,” in Proceedings, Theoretical Advanced Study Institute in Elementary Particle Physics : Anticipating the Next Discoveries in Particle Physics (TASI 2016): Boulder, CO, USA, June 6-July 1, 2016, edited by R. Essig and I. Low (WSP, 2018) pp. 501–570, arXiv:1811.04279 [hep-ph] .
  6. D. Marzocca, M. Serone, and J. Shu, “General Composite Higgs Models,” JHEP 08, 013 (2012).
  7. G. Panico and A. Wulzer, The Composite Nambu-Goldstone Higgs, Vol. 913 (Springer, 2016) arXiv:1506.01961 [hep-ph] .
  8. J. P. H. Daza, Composite Higgs models, Ph.D. thesis, Sao Paulo U. (2019), arXiv:1908.10204 [hep-ph] .
  9. B. Gripaios, A. Pomarol, F. Riva, and J. Serra, “Beyond the Minimal Composite Higgs Model,” JHEP 04, 070 (2009).
  10. M. Frigerio, A. Pomarol, F. Riva, and A. Urbano, “Composite Scalar Dark Matter,” JHEP 07, 015 (2012).
  11. D. Marzocca and A. Urbano, “Composite Dark Matter and LHC Interplay,” JHEP 07, 107 (2014).
  12. S. Xu and S. Zheng, “Identifying Minimal Composite Dark Matter,” Int. J. Theor. Phys. 62, 101 (2023).
  13. N. Arkani-Hamed, M. Porrati, and L. Randall, “Holography and phenomenology,” JHEP 08, 017 (2001).
  14. R. Rattazzi and A. Zaffaroni, “Comments on the holographic picture of the Randall-Sundrum model,” JHEP 04, 021 (2001).
  15. W. D. Goldberger and M. B. Wise, “Modulus stabilization with bulk fields,” Phys. Rev. Lett. 83, 4922–4925 (1999).
  16. A. Pomarol, O. Pujolas, and L. Salas, “Holographic conformal transition and light scalars,” JHEP 10, 202 (2019).
  17. P. Baratella, A. Pomarol, and F. Rompineve, “The Supercooled Universe,” JHEP 03, 100 (2019).
  18. S. Bruggisser, B. Von Harling, O. Matsedonskyi, and G. Servant, “Electroweak Phase Transition and Baryogenesis in Composite Higgs Models,” JHEP 12, 099 (2018).
  19. S. Bruggisser, B. von Harling, O. Matsedonskyi, and G. Servant, “Status of electroweak baryogenesis in minimal composite Higgs,” JHEP 08, 012 (2023a).
  20. L. Bian, Y. Wu, and K.-P. Xie, “Electroweak phase transition with composite Higgs models: calculability, gravitational waves and collider searches,” JHEP 12, 028 (2019).
  21. D. J. H. Chung, A. J. Long, and L.-T. Wang, “125 GeV Higgs boson and electroweak phase transition model classes,” Phys. Rev. D 87, 023509 (2013).
  22. D. Croon, “TASI lectures on Phase Transitions, Baryogenesis, and Gravitational Waves,” PoS TASI2022, 003 (2024).
  23. H. H. Patel and M. J. Ramsey-Musolf, ‘‘Stepping Into Electroweak Symmetry Breaking: Phase Transitions and Higgs Phenomenology,” Phys. Rev. D 88, 035013 (2013).
  24. A. Mazumdar and G. White, “Review of cosmic phase transitions: their significance and experimental signatures,” Rept. Prog. Phys. 82, 076901 (2019).
  25. S. Inoue, G. Ovanesyan, and M. J. Ramsey-Musolf, “Two-Step Electroweak Baryogenesis,” Phys. Rev. D 93, 015013 (2016).
  26. D. Curtin, P. Meade, and H. Ramani, “Thermal Resummation and Phase Transitions,” Eur. Phys. J. C 78, 787 (2018).
  27. A. G. Cohen, D. B. Kaplan, and A. E. Nelson, “Spontaneous baryogenesis at the weak phase transition,” Phys. Lett. B 263, 86–92 (1991).
  28. A. G. Cohen, D. B. Kaplan, and A. E. Nelson, “Progress in electroweak baryogenesis,” Ann. Rev. Nucl. Part. Sci. 43, 27–70 (1993).
  29. M. Trodden, “Electroweak baryogenesis,” Rev. Mod. Phys. 71, 1463–1500 (1999).
  30. J. M. Cline, “Baryogenesis,” in Les Houches Summer School - Session 86: Particle Physics and Cosmology: The Fabric of Spacetime (2006) arXiv:hep-ph/0609145 .
  31. N. Petropoulos, “Baryogenesis at the electroweak phase transition,”  (2003), arXiv:hep-ph/0304275 .
  32. G. A. White, “A Pedagogical Introduction to Electroweak Baryogenesis,” .
  33. A. Braconi, Bubble Nucleation and the Electroweak Phase Transition (University of California, Irvine, 2021).
  34. J. R. Espinosa, B. Gripaios, T. Konstandin, and F. Riva, “Electroweak Baryogenesis in Non-minimal Composite Higgs Models,” JCAP 01, 012 (2012).
  35. S. De Curtis, L. Delle Rose, and G. Panico, “Composite Dynamics in the Early Universe,” JHEP 12, 149 (2019).
  36. M. Chala, G. Nardini, and I. Sobolev, “Unified explanation for dark matter and electroweak baryogenesis with direct detection and gravitational wave signatures,” Phys. Rev. D 94, 055006 (2016).
  37. P. Amaro-Seoane  et al. (LISA), “Laser Interferometer Space Antenna,” arXiv:1702.00786 [astro-ph.IM] .
  38. J. Mei  et al. (TianQin), “The TianQin project: current progress on science and technology,” PTEP 2021, 05A107 (2021).
  39. W.-H. Ruan, Z.-K. Guo, R.-G. Cai, and Y.-Z. Zhang, “Taiji program: Gravitational-wave sources,” Int. J. Mod. Phys. A 35, 2050075 (2020).
  40. C. Cutler and J. Harms, “BBO and the neutron-star-binary subtraction problem,” Phys. Rev. D 73, 042001 (2006).
  41. H. Kudoh, A. Taruya, T. Hiramatsu, and Y. Himemoto, “Detecting a gravitational-wave background with next-generation space interferometers,” Phys. Rev. D 73, 064006 (2006).
  42. K.-P. Xie, L. Bian, and Y. Wu, “Electroweak baryogenesis and gravitational waves in a composite Higgs model with high dimensional fermion representations,” JHEP 12, 047 (2020).
  43. Z. Chacko and R. K. Mishra, “Effective Theory of a Light Dilaton,” Phys. Rev. D 87, 115006 (2013).
  44. J. Aalbers  et al. (LZ), “First Dark Matter Search Results from the LUX-ZEPLIN (LZ) Experiment,” Phys. Rev. Lett. 131, 041002 (2023).
  45. S. Bruggisser, B. von Harling, O. Matsedonskyi, and G. Servant, “Dilaton at the LHC: complementary probe of composite Higgs,” JHEP 05, 080 (2023b).
  46. W. Chao, H.-K. Guo, and J. Shu, “Gravitational Wave Signals of Electroweak Phase Transition Triggered by Dark Matter,” JCAP 09, 009 (2017).
  47. M. L. Ahnen  et al. (MAGIC, Fermi-LAT), “Limits to Dark Matter Annihilation Cross-Section from a Combined Analysis of MAGIC and Fermi-LAT Observations of Dwarf Satellite Galaxies,” JCAP 02, 039 (2016).
  48. N. Aghanim  et al. (Planck), “Planck 2018 results. VI. Cosmological parameters,” Astron. Astrophys. 641, A6 (2020), [Erratum: Astron.Astrophys. 652, C4 (2021)].
  49. G. Bélanger, F. Boudjema, A. Pukhov, and A. Semenov, “micrOMEGAs4.1: two dark matter candidates,” Comput. Phys. Commun. 192, 322–329 (2015).
  50. M. Laine and A. Vuorinen, Basics of Thermal Field Theory, Vol. 925 (Springer, 2016) arXiv:1701.01554 [hep-ph] .
  51. A. D. Linde, “Phase Transitions in Gauge Theories and Cosmology,” Rept. Prog. Phys. 42, 389 (1979).
  52. A. D. Linde, “Fate of the False Vacuum at Finite Temperature: Theory and Applications,” Phys. Lett. B 100, 37–40 (1981).
  53. M. Sher, “Electroweak Higgs Potentials and Vacuum Stability,” Phys. Rept. 179, 273–418 (1989).
  54. M. Quiros, ‘‘Finite temperature field theory and phase transitions,” in ICTP Summer School in High-Energy Physics and Cosmology (1999) pp. 187–259, arXiv:hep-ph/9901312 .
  55. M. B. Hindmarsh, M. Lüben, J. Lumma, and M. Pauly, “Phase transitions in the early universe,” SciPost Phys. Lect. Notes 24, 1 (2021).
  56. B. von Harling and G. Servant, “QCD-induced Electroweak Phase Transition,” JHEP 01, 159 (2018).
  57. Y. Bea, J. Casalderrey-Solana, T. Giannakopoulos, A. Jansen, S. Krippendorf, D. Mateos, M. Sanchez-Garitaonandia, and M. Zilhão, “Spinodal Gravitational Waves,” arXiv:2112.15478 [hep-th] .
  58. C. L. Wainwright, ‘‘CosmoTransitions: Computing Cosmological Phase Transition Temperatures and Bubble Profiles with Multiple Fields,” Comput. Phys. Commun. 183, 2006–2013 (2012).
  59. G. Nardini, M. Quiros, and A. Wulzer, “A Confining Strong First-Order Electroweak Phase Transition,” JHEP 09, 077 (2007).
  60. M. J. Duncan and L. G. Jensen, “Exact tunneling solutions in scalar field theory,” Phys. Lett. B 291, 109–114 (1992).
  61. X. Wang, F. P. Huang, and X. Zhang, “Phase transition dynamics and gravitational wave spectra of strong first-order phase transition in supercooled universe,” JCAP 05, 045 (2020).
  62. R. Jinno, H. Seong, M. Takimoto, and C. M. Um, “Gravitational waves from first-order phase transitions: Ultra-supercooled transitions and the fate of relativistic shocks,” JCAP 10, 033 (2019).
  63. M. Lewicki and V. Vaskonen, “Gravitational wave spectra from strongly supercooled phase transitions,” Eur. Phys. J. C 80, 1003 (2020).
  64. J. Ellis, M. Lewicki, J. M. No, and V. Vaskonen, “Gravitational wave energy budget in strongly supercooled phase transitions,” JCAP 06, 024 (2019).
  65. L. Sagunski, P. Schicho, and D. Schmitt, “Supercool exit: Gravitational waves from QCD-triggered conformal symmetry breaking,” Phys. Rev. D 107, 123512 (2023).
  66. D. Bodeker and G. D. Moore, “Can electroweak bubble walls run away?” JCAP 05, 009 (2009).
  67. S. J. Huber and T. Konstandin, “Gravitational Wave Production by Collisions: More Bubbles,” JCAP 09, 022 (2008).
  68. T. Konstandin, “Gravitational radiation from a bulk flow model,” JCAP 03, 047 (2018).
  69. D. Cutting, M. Hindmarsh, and D. J. Weir, “Gravitational waves from vacuum first-order phase transitions: from the envelope to the lattice,” Phys. Rev. D 97, 123513 (2018).
  70. K. Blum, M. Cliche, C. Csaki, and S. J. Lee, “WIMP Dark Matter through the Dilaton Portal,” JHEP 03, 099 (2015).
  71. M. Kim, S. J. Lee, and A. Parolini, “WIMP Dark Matter in Composite Higgs Models and the Dilaton Portal,” arXiv:1602.05590 [hep-ph] .
  72. M. Spira, “Higgs Boson Production and Decay at Hadron Colliders,” Prog. Part. Nucl. Phys. 95, 98–159 (2017).
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube