Towards Optimal Circuit Size for Sparse Quantum State Preparation
Abstract: Compared to general quantum states, the sparse states arise more frequently in the field of quantum computation. In this work, we consider the preparation for $n$-qubit sparse quantum states with $s$ non-zero amplitudes and propose two algorithms. The first algorithm uses $O(ns/\log n + n)$ gates, improving upon previous methods by $O(\log n)$. We further establish a matching lower bound for any algorithm which is not amplitude-aware and employs at most $\operatorname{poly}(n)$ ancillary qubits. The second algorithm is tailored for binary strings that exhibit a short Hamiltonian path. An application is the preparation of $U(1)$-invariant state with $k$ down-spins in a chain of length $n$, including Bethe states, for which our algorithm constructs a circuit of size $O\left(\binom{n}{k}\log n\right)$. This surpasses previous results by $O(n/\log n)$ and is close to the lower bound $O\left(\binom{n}{k}\right)$. Both the two algorithms shrink the existing gap theoretically and provide increasing advantages numerically.
- D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D. Somma, “Simulating hamiltonian dynamics with a truncated taylor series,” Physical review letters, vol. 114, no. 9, p. 090502, 2015.
- G. H. Low and I. L. Chuang, “Optimal hamiltonian simulation by quantum signal processing,” Physical review letters, vol. 118, no. 1, p. 010501, 2017.
- ——, “Hamiltonian simulation by qubitization,” Quantum, vol. 3, p. 163, 2019.
- D. W. Berry, A. M. Childs, and R. Kothari, “Hamiltonian simulation with nearly optimal dependence on all parameters,” in 2015 IEEE 56th annual symposium on foundations of computer science. IEEE, 2015, pp. 792–809.
- M. Schuld, I. Sinayskiy, and F. Petruccione, “An introduction to quantum machine learning,” Contemporary Physics, vol. 56, no. 2, pp. 172–185, 2015.
- J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd, “Quantum machine learning,” Nature, vol. 549, no. 7671, pp. 195–202, 2017.
- I. Kerenidis and A. Prakash, “Quantum recommendation systems,” arXiv preprint arXiv:1603.08675, 2016.
- P. Rebentrost, A. Steffens, I. Marvian, and S. Lloyd, “Quantum singular-value decomposition of nonsparse low-rank matrices,” Physical review A, vol. 97, no. 1, p. 012327, 2018.
- A. W. Harrow, A. Hassidim, and S. Lloyd, “Quantum algorithm for linear systems of equations,” Physical review letters, vol. 103, no. 15, p. 150502, 2009.
- L. Wossnig, Z. Zhao, and A. Prakash, “Quantum linear system algorithm for dense matrices,” Physical review letters, vol. 120, no. 5, p. 050502, 2018.
- I. Kerenidis, J. Landman, A. Luongo, and A. Prakash, “q-means: A quantum algorithm for unsupervised machine learning,” Advances in neural information processing systems, vol. 32, 2019.
- I. Kerenidis and J. Landman, “Quantum spectral clustering,” Physical Review A, vol. 103, no. 4, p. 042415, 2021.
- P. Rebentrost, M. Mohseni, and S. Lloyd, “Quantum support vector machine for big data classification,” Physical review letters, vol. 113, no. 13, p. 130503, 2014.
- M. Plesch and Č. Brukner, “Quantum-state preparation with universal gate decompositions,” Physical Review A, vol. 83, no. 3, p. 032302, 2011.
- N. Gleinig and T. Hoefler, “An efficient algorithm for sparse quantum state preparation,” in 2021 58th ACM/IEEE Design Automation Conference (DAC). IEEE, 2021, pp. 433–438.
- I. F. Araujo, C. Blank, and A. J. da Silva, “Entanglement as a complexity measure for quantum state preparation,” J, 2021.
- A. G. Rattew and B. Koczor, “Preparing arbitrary continuous functions in quantum registers with logarithmic complexity,” arXiv preprint arXiv:2205.00519, 2022.
- W. Dür, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in two inequivalent ways,” Physical Review A, vol. 62, no. 6, p. 062314, 2000.
- A. Bärtschi and S. Eidenbenz, “Deterministic preparation of dicke states,” in International Symposium on Fundamentals of Computation Theory. Springer, 2019, pp. 126–139.
- W. Cottrell, B. Freivogel, D. M. Hofman, and S. F. Lokhande, “How to build the thermofield double state,” Journal of High Energy Physics, vol. 2019, no. 2, pp. 1–43, 2019.
- J. S. V. Dyke, G. S. Barron, N. J. Mayhall, E. Barnes, and S. E. Economou, “Preparing bethe ansatz eigenstates on a quantum computer,” PRX Quantum, vol. 2, no. 4, p. 040329, 2021.
- M. Ben-Or and A. Hassidim, “Fast quantum byzantine agreement,” in Proceedings of the thirty-seventh annual ACM symposium on Theory of computing, 2005, pp. 481–485.
- E. Malvetti, R. Iten, and R. Colbeck, “Quantum circuits for sparse isometries,” Quantum, vol. 5, p. 412, 2021.
- T. M. de Veras, L. D. da Silva, and A. J. da Silva, “Double sparse quantum state preparation,” Quantum Information Processing, vol. 21, no. 6, p. 204, 2022.
- F. Mozafari, G. D. Micheli, and Y. Yang, “Efficient deterministic preparation of quantum states using decision diagrams,” Physical Review A, vol. 106, no. 2, p. 022617, 2022.
- D. Ramacciotti, A.-I. Lefterovici, and A. F. Rotundo, “A simple quantum algorithm to efficiently prepare sparse states,” arXiv preprint arXiv:2310.19309, 2023.
- L. Grover and T. Rudolph, “Creating superpositions that correspond to efficiently integrable probability distributions,” arXiv preprint quant-ph/0208112, 2002.
- X.-M. Zhang, T. Li, and X. Yuan, “Quantum state preparation with optimal circuit depth: Implementations and applications,” Physical Review Letters, vol. 129, no. 23, p. 230504, 2022.
- C. Gidney, “Constructing large controlled nots,” https://algassert.com/circuits/2015/06/05/Constructing-Large-Controlled-Nots.html, 2015.
- A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Physical review A, vol. 52, no. 5, p. 3457, 1995.
- K. Markov, I. Patel, and J. Hayes, “Optimal synthesis of linear reversible circuits,” Quantum Information and Computation, vol. 8, no. 3&4, pp. 0282–0294, 2008.
- D. V. Zakablukov, “On asymptotic gate complexity and depth of reversible circuits without additional memory,” Journal of Computer and System Sciences, vol. 84, pp. 132–143, 2017.
- J. Ernvall, J. Katajainen, and M. Penttonen, “NP-completeness of the hamming salesman problem,” BIT Numerical Mathematics, vol. 25, pp. 289–292, 1985.
- G. Cohen, S. Litsyn, and G. Zemor, “On the traveling salesman problem in binary hamming spaces,” IEEE Transactions on Information Theory, vol. 42, no. 4, pp. 1274–1276, 1996.
- D. Raveh and R. I. Nepomechie, “Deterministic bethe state preparation,” arXiv preprint arXiv:2403.03283, 2024.
- V. Vajnovszki and T. Walsh, “A loop-free two-close gray-code algorithm for listing k-ary dyck words,” Journal of Discrete Algorithms, vol. 4, no. 4, pp. 633–648, 2006.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.