Quantitative Weakest Hyper Pre: Unifying Correctness and Incorrectness Hyperproperties via Predicate Transformers
Abstract: We present a novel \emph{weakest pre calculus} for \emph{reasoning about quantitative hyperproperties} over \emph{nondeterministic and probabilistic} programs. Whereas existing calculi allow reasoning about the expected value that a quantity assumes after program termination from a \emph{single initial state}, we do so for \emph{initial sets of states} or \emph{initial probability distributions}. We thus (i)~obtain a weakest pre calculus for hyper Hoare logic and (ii)~enable reasoning about so-called \emph{hyperquantities} which include expected values but also quantities (e.g. variance) out of scope of previous work. As a byproduct, we obtain a novel strongest post for weighted programs that extends both existing strongest and strongest liberal post calculi. Our framework reveals novel dualities between forward and backward transformers, correctness and incorrectness, as well as nontermination and unreachability.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.