Papers
Topics
Authors
Recent
2000 character limit reached

Test-Time Training for Depression Detection

Published 7 Apr 2024 in cs.LG, cs.SD, and eess.AS | (2404.05071v1)

Abstract: Previous works on depression detection use datasets collected in similar environments to train and test the models. In practice, however, the train and test distributions cannot be guaranteed to be identical. Distribution shifts can be introduced due to variations such as recording environment (e.g., background noise) and demographics (e.g., gender, age, etc). Such distributional shifts can surprisingly lead to severe performance degradation of the depression detection models. In this paper, we analyze the application of test-time training (TTT) to improve robustness of models trained for depression detection. When compared to regular testing of the models, we find TTT can significantly improve the robustness of the model under a variety of distributional shifts introduced due to: (a) background-noise, (b) gender-bias, and (c) data collection and curation procedure (i.e., train and test samples are from separate datasets).

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 1 like about this paper.