Papers
Topics
Authors
Recent
Search
2000 character limit reached

Signal-noise separation using unsupervised reservoir computing

Published 7 Apr 2024 in cs.LG, eess.SP, and nlin.CD | (2404.04870v2)

Abstract: Removing noise from a signal without knowing the characteristics of the noise is a challenging task. This paper introduces a signal-noise separation method based on time series prediction. We use Reservoir Computing (RC) to extract the maximum portion of "predictable information" from a given signal. Reproducing the deterministic component of the signal using RC, we estimate the noise distribution from the difference between the original signal and reconstructed one. The method is based on a machine learning approach and requires no prior knowledge of either the deterministic signal or the noise distribution. It provides a way to identify additivity/multiplicativity of noise and to estimate the signal-to-noise ratio (SNR) indirectly. The method works successfully for combinations of various signal and noise, including chaotic signal and highly oscillating sinusoidal signal which are corrupted by non-Gaussian additive/ multiplicative noise. The separation performances are robust and notably outstanding for signals with strong noise, even for those with negative SNR.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 2 likes about this paper.