Papers
Topics
Authors
Recent
2000 character limit reached

Engineering quantum states with neutral atoms

Published 5 Apr 2024 in quant-ph | (2404.04411v2)

Abstract: Aquila, an analog quantum simulation platform developed by QuEra Computing, supports control of the position and coherent evolution of up to 256 neutral atoms. This study details novel experimental protocols designed for analog quantum simulators that generate Bell state entanglement far away from the blockade regime, construct a $Z_2$ state with a defect induced by an ancilla, and optimize the driving fields schedule to prepare excited states with enhanced fidelity. We additionally evaluate the effectiveness of readout error mitigation techniques in improving the fidelity of measurement results. All experiments were executed on Aquila from QuEra and facilitated by the AWS Braket interface. Our experimental results closely align with theoretical predictions and numerical simulations. The insights gained from this study showcase Aquila's capabilities in handling complex quantum simulations and computations, and also pave the way for new avenues of research in quantum information processing and physics that employ programmable analog hardware platforms.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. A. Browaeys and T. Lahaye, “Many-body physics with individually controlled rydberg atoms,” Nature Physics, vol. 16, no. 2, pp. 132–142, Feb 2020. [Online]. Available: https://doi.org/10.1038/s41567-019-0733-z
  2. D. Bluvstein, A. Omran, H. Levine, A. Keesling, G. Semeghini, S. Ebadi, T. T. Wang, A. A. Michailidis, N. Maskara, W. W. Ho, S. Choi, M. Serbyn, M. Greiner, V. Vuletić, and M. D. Lukin, “Controlling quantum many-body dynamics in driven rydberg atom arrays,” Science, vol. 371, no. 6536, pp. 1355–1359, 2021. [Online]. Available: https://www.science.org/doi/abs/10.1126/science.abg2530
  3. H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran, H. Pichler, S. Choi, A. S. Zibrov, M. Endres, M. Greiner, V. Vuletić, and M. D. Lukin, “Probing many-body dynamics on a 51-atom quantum simulator,” Nature, vol. 551, no. 7682, pp. 579–584, Nov 2017. [Online]. Available: https://doi.org/10.1038/nature24622
  4. C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn, and Z. Papić, “Weak ergodicity breaking from quantum many-body scars,” Nature Physics, vol. 14, no. 7, pp. 745–749, Jul 2018. [Online]. Available: https://doi.org/10.1038/s41567-018-0137-5
  5. A. Keesling, A. Omran, H. Levine, H. Bernien, H. Pichler, S. Choi, R. Samajdar, S. Schwartz, P. Silvi, S. Sachdev, P. Zoller, M. Endres, M. Greiner, V. Vuletić, and M. D. Lukin, “Quantum kibble–zurek mechanism and critical dynamics on a programmable rydberg simulator,” Nature, vol. 568, no. 7751, pp. 207–211, Apr 2019. [Online]. Available: https://doi.org/10.1038/s41586-019-1070-1
  6. S. Ebadi, T. T. Wang, H. Levine, A. Keesling, G. Semeghini, A. Omran, D. Bluvstein, R. Samajdar, H. Pichler, W. W. Ho, S. Choi, S. Sachdev, M. Greiner, V. Vuletić, and M. D. Lukin, “Quantum phases of matter on a 256-atom programmable quantum simulator,” Nature, vol. 595, no. 7866, pp. 227–232, Jul 2021. [Online]. Available: https://doi.org/10.1038/s41586-021-03582-4
  7. C. Chen, G. Bornet, M. Bintz, G. Emperauger, L. Leclerc, V. S. Liu, P. Scholl, D. Barredo, J. Hauschild, S. Chatterjee, M. Schuler, A. M. Läuchli, M. P. Zaletel, T. Lahaye, N. Y. Yao, and A. Browaeys, “Continuous symmetry breaking in a two-dimensional rydberg array,” Nature, vol. 616, no. 7958, pp. 691–695, Apr 2023. [Online]. Available: https://doi.org/10.1038/s41586-023-05859-2
  8. G. Semeghini, H. Levine, A. Keesling, S. Ebadi, T. T. Wang, D. Bluvstein, R. Verresen, H. Pichler, M. Kalinowski, R. Samajdar, A. Omran, S. Sachdev, A. Vishwanath, M. Greiner, V. Vuletić, and M. D. Lukin, “Probing topological spin liquids on a programmable quantum simulator,” Science, vol. 374, no. 6572, pp. 1242–1247, 2021. [Online]. Available: https://www.science.org/doi/abs/10.1126/science.abi8794
  9. M. Kornjača, R. Samajdar, T. Macrì, N. Gemelke, S.-T. Wang, and F. Liu, “Trimer quantum spin liquid in a honeycomb array of rydberg atoms,” Communications Physics, vol. 6, no. 1, p. 358, Dec 2023. [Online]. Available: https://doi.org/10.1038/s42005-023-01470-z
  10. F. M. Surace and A. Lerose, “Scattering of mesons in quantum simulators,” New Journal of Physics, vol. 23, no. 6, p. 062001, jun 2021. [Online]. Available: https://dx.doi.org/10.1088/1367-2630/abfc40
  11. S. Ebadi, A. Keesling, M. Cain, T. T. Wang, H. Levine, D. Bluvstein, G. Semeghini, A. Omran, J.-G. Liu, R. Samajdar, X.-Z. Luo, B. Nash, X. Gao, B. Barak, E. Farhi, S. Sachdev, N. Gemelke, L. Zhou, S. Choi, H. Pichler, S.-T. Wang, M. Greiner, V. Vuletić, and M. D. Lukin, “Quantum optimization of maximum independent set using rydberg atom arrays,” Science, vol. 376, no. 6598, pp. 1209–1215, 2022. [Online]. Available: https://www.science.org/doi/abs/10.1126/science.abo6587
  12. M.-T. Nguyen, J.-G. Liu, J. Wurtz, M. D. Lukin, S.-T. Wang, and H. Pichler, “Quantum optimization with arbitrary connectivity using rydberg atom arrays,” PRX Quantum, vol. 4, p. 010316, Feb 2023. [Online]. Available: https://link.aps.org/doi/10.1103/PRXQuantum.4.010316
  13. J. R. Finžgar, M. J. A. Schuetz, J. K. Brubaker, H. Nishimori, and H. G. Katzgraber, “Designing quantum annealing schedules using bayesian optimization,” 2023.
  14. D. Bluvstein, H. Levine, G. Semeghini, T. T. Wang, S. Ebadi, M. Kalinowski, A. Keesling, N. Maskara, H. Pichler, M. Greiner, V. Vuletić, and M. D. Lukin, “A quantum processor based on coherent transport of entangled atom arrays,” Nature, vol. 604, no. 7906, pp. 451–456, Apr 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04592-6
  15. D. Bluvstein, S. J. Evered, A. A. Geim, S. H. Li, H. Zhou, T. Manovitz, S. Ebadi, M. Cain, M. Kalinowski, D. Hangleiter, J. P. Bonilla Ataides, N. Maskara, I. Cong, X. Gao, P. Sales Rodriguez, T. Karolyshyn, G. Semeghini, M. J. Gullans, M. Greiner, V. Vuletić, and M. D. Lukin, “Logical quantum processor based on reconfigurable atom arrays,” Nature, vol. 626, no. 7997, pp. 58–65, Feb 2024. [Online]. Available: https://doi.org/10.1038/s41586-023-06927-3
  16. Amazon Web Services, “QuEra Computing - Amazon Braket Quantum Computers,” https://aws.amazon.com/braket/quantum-computers/quera/, 2024, [Online; accessed 2-February-2024].
  17. J. Wurtz, A. Bylinskii, B. Braverman, J. Amato-Grill, S. H. Cantu, F. Huber, A. Lukin, F. Liu, P. Weinberg, J. Long, S.-T. Wang, N. Gemelke, and A. Keesling, “Aquila: Quera’s 256-qubit neutral-atom quantum computer,” 2023.
  18. H. Levine, A. Keesling, G. Semeghini, A. Omran, T. T. Wang, S. Ebadi, H. Bernien, M. Greiner, V. Vuletić, H. Pichler, and M. D. Lukin, “Parallel implementation of high-fidelity multiqubit gates with neutral atoms,” Phys. Rev. Lett., vol. 123, p. 170503, Oct 2019. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.123.170503
  19. S. Bravyi, S. Sheldon, A. Kandala, D. C. Mckay, and J. M. Gambetta, “Mitigating measurement errors in multiqubit experiments,” Phys. Rev. A, vol. 103, p. 042605, Apr 2021. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.103.042605
  20. M. J. D. Powell, “A direct search optimization method that models the objective and constraint functions by linear interpolation,” Advances in Optimization and Numerical Analysis, vol. 275, pp. 51–67, 1994.
  21. G. N. Purohit, S. Verma, U. Sharma, and G. Chauhan, “Constructing micds algorithm for data transmission using maximal independent set in network graph,” International Journal of Computer Applications, vol. 108, pp. 19–24, 2014. [Online]. Available: https://api.semanticscholar.org/CorpusID:17616110
  22. Y. Afek, N. Alon, Z. Bar-Joseph, A. Cornejo, B. Haeupler, and F. Kuhn, “Beeping a maximal independent set,” Distributed Computing, vol. 26, no. 4, pp. 195–208, 2013. [Online]. Available: https://doi.org/10.1007/s00446-012-0175-7
  23. J. Wurtz, P. L. S. Lopes, C. Gorgulla, N. Gemelke, A. Keesling, and S. Wang, “Industry applications of neutral-atom quantum computing solving independent set problems,” 2024.
  24. J. Wurtz, S. Sack, and S.-T. Wang, “Solving non-native combinatorial optimization problems using hybrid quantum-classical algorithms,” 2024.
  25. M. Kormos, M. Collura, G. Takács, and P. Calabrese, “Real-time confinement following a quantum quench to a non-integrable model,” Nature Physics, vol. 13, no. 3, pp. 246–249, Mar 2017. [Online]. Available: https://doi.org/10.1038/nphys3934
  26. F. Liu, R. Lundgren, P. Titum, G. Pagano, J. Zhang, C. Monroe, and A. V. Gorshkov, “Confined quasiparticle dynamics in long-range interacting quantum spin chains,” Phys. Rev. Lett., vol. 122, p. 150601, Apr 2019. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.122.150601
  27. W. L. Tan, P. Becker, F. Liu, G. Pagano, K. S. Collins, A. De, L. Feng, H. B. Kaplan, A. Kyprianidis, R. Lundgren, W. Morong, S. Whitsitt, A. V. Gorshkov, and C. Monroe, “Domain-wall confinement and dynamics in a quantum simulator,” Nature Physics, vol. 17, no. 6, pp. 742–747, Jun 2021. [Online]. Available: https://doi.org/10.1038/s41567-021-01194-3
Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.