Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Disorder operators in 2D Fermi and non-Fermi liquids through multidimensional bosonization (2404.04334v1)

Published 5 Apr 2024 in cond-mat.str-el, hep-th, and quant-ph

Abstract: Disorder operators are a type of non-local observables for quantum many-body systems, measuring the fluctuations of symmetry charges inside a region. It has been shown that disorder operators can reveal global aspects of many-body states that are otherwise difficult to access through local measurements. We study disorder operator for U(1) (charge or spin) symmetry in 2D Fermi and non-Fermi liquid states, using the multidimensional bosonization formalism. For a region $A$, the logarithm of the charge disorder parameter in a Fermi liquid with isotropic interactions scales asympototically as $l_A\ln l_A$, with $l_A$ being the linear size of the region $A$. We calculate the proportionality coefficient in terms of Landau parameters of the Fermi liquid theory. We then study models of Fermi surface coupled to gapless bosonic fields realizing non-Fermi liquid states. In a simple spinless model, where the fermion density is coupled to a critical scalar, we find that at the quantum critical point, the scaling behavior of the charge disorder operators is drastically modified to $l_A \ln2 l_A$. We also consider the composite Fermi liquid state and argue that the charge disorder operator scales as $l_A$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. K.-L. Cai and M. Cheng, Universal contributions to charge fluctuations in spin chains at finite temperature, arXiv:2401.09548 [cond-mat.str-el] (2024).
  2. G. Cuomo, Z. Komargodski, and A. Raviv-Moshe, Renormalization group flows on line defects, Phys. Rev. Lett. 128, 021603 (2022).
  3. X.-C. Wu, W. Ji, and C. Xu, Categorical symmetries at criticality, Journal of Statistical Mechanics: Theory and Experiment 2021, 073101 (2021), arXiv:2012.03976 [cond-mat.str-el] .
  4. X.-C. Wu, C.-M. Jian, and C. Xu, Universal features of higher-form symmetries at phase transitions, SciPost Phys. 11, 033 (2021).
  5. Y.-C. Wang, M. Cheng, and Z. Y. Meng, Scaling of the disorder operator at (2+1)⁢d21𝑑(2+1)d( 2 + 1 ) italic_d u(1) quantum criticality, Phys. Rev. B 104, L081109 (2021).
  6. M. M. Wolf, Violation of the entropic area law for Fermions, Phys. Rev. Lett. 96, 010404 (2006), arXiv:quant-ph/0503219 .
  7. D. Gioev and I. Klich, Entanglement entropy of fermions in any dimension and the widom conjecture, Phys. Rev. Lett. 96, 100503 (2006).
  8. F. D. M. Haldane, Luttinger’s theorem and bosonization of the fermi surface (2005), arXiv:cond-mat/0505529 [cond-mat.str-el] .
  9. A. Houghton and J. B. Marston, Bosonization and fermion liquids in dimensions greater than one, Phys. Rev. B 48, 7790 (1993), arXiv:cond-mat/9210007 .
  10. A. C. Neto and E. Fradkin, Bosonization of fermi liquids, Physical Review B 49, 10877 (1994).
  11. A. C. Neto and E. H. Fradkin, Exact solution of the landau fixed point via bosonization, Physical Review B 51, 4084 (1995).
  12. W. Ding, A. Seidel, and K. Yang, Entanglement entropy of fermi liquids via multidimensional bosonization, Physical Review X 2, 011012 (2012).
  13. W. Belzig and Y. V. Nazarov, Full current statistics in diffusive normal-superconductor structures, Phys. Rev. Lett. 87, 067006 (2001).
  14. L. S. Levitov and M. Reznikov, Counting statistics of tunneling current, Phys. Rev. B 70, 115305 (2004).
  15. H. F. Song, S. Rachel, and K. Le Hur, General relation between entanglement and fluctuations in one dimension, Phys. Rev. B 82, 012405 (2010).
  16. P. M. Tam, M. Claassen, and C. L. Kane, Topological multipartite entanglement in a fermi liquid, Phys. Rev. X 12, 031022 (2022).
  17. B. Estienne, J.-M. Stéphan, and W. Witczak-Krempa, Cornering the universal shape of fluctuations, Nature Commun. 13, 287 (2022), arXiv:2102.06223 [cond-mat.str-el] .
  18. A. Houghton, H.-J. Kwon, and J. Marston, Multidimensional bosonization, Advances in Physics 49, 141 (2000).
  19. B. Swingle and T. Senthil, Universal crossovers between entanglement entropy and thermal entropy, Physical Review B 87, 045123 (2013).
  20. P. Coleman, Introduction to many-body physics (Cambridge University Press, 2015).
  21. Y. Zang, Y. Gu, and S. Jiang, Detecting quantum anomalies in open systems, arXiv:2312.11188 , arXiv:2312.11188.
  22. We notice that [34] has an opposite sign in this relation, which would cause instability of the theory even at the critical point.
  23. B. I. Halperin, P. A. Lee, and N. Read, Theory of the half-filled landau level, Phys. Rev. B 47, 7312 (1993).
  24. H.-J. Kwon, A. Houghton, and J. Marston, Gauge interactions and bosonized fermion liquids, Physical review letters 73, 284 (1994).
  25. N. Read, Lowest-landau-level theory of the quantum hall effect: The fermi-liquid-like state of bosons at filling factor one, Phys. Rev. B 58, 16262 (1998).
  26. Y. Zhang, T. Grover, and A. Vishwanath, Entanglement entropy of critical spin liquids, Phys. Rev. Lett. 107, 067202 (2011).
  27. R. V. Mishmash and O. I. Motrunich, Entanglement entropy of composite fermi liquid states on the lattice: In support of the widom formula, Phys. Rev. B 94, 081110 (2016).
  28. X.-C. Wu, to appear.
Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.