Disorder operators in 2D Fermi and non-Fermi liquids through multidimensional bosonization (2404.04334v1)
Abstract: Disorder operators are a type of non-local observables for quantum many-body systems, measuring the fluctuations of symmetry charges inside a region. It has been shown that disorder operators can reveal global aspects of many-body states that are otherwise difficult to access through local measurements. We study disorder operator for U(1) (charge or spin) symmetry in 2D Fermi and non-Fermi liquid states, using the multidimensional bosonization formalism. For a region $A$, the logarithm of the charge disorder parameter in a Fermi liquid with isotropic interactions scales asympototically as $l_A\ln l_A$, with $l_A$ being the linear size of the region $A$. We calculate the proportionality coefficient in terms of Landau parameters of the Fermi liquid theory. We then study models of Fermi surface coupled to gapless bosonic fields realizing non-Fermi liquid states. In a simple spinless model, where the fermion density is coupled to a critical scalar, we find that at the quantum critical point, the scaling behavior of the charge disorder operators is drastically modified to $l_A \ln2 l_A$. We also consider the composite Fermi liquid state and argue that the charge disorder operator scales as $l_A$.
- K.-L. Cai and M. Cheng, Universal contributions to charge fluctuations in spin chains at finite temperature, arXiv:2401.09548 [cond-mat.str-el] (2024).
- G. Cuomo, Z. Komargodski, and A. Raviv-Moshe, Renormalization group flows on line defects, Phys. Rev. Lett. 128, 021603 (2022).
- X.-C. Wu, W. Ji, and C. Xu, Categorical symmetries at criticality, Journal of Statistical Mechanics: Theory and Experiment 2021, 073101 (2021), arXiv:2012.03976 [cond-mat.str-el] .
- X.-C. Wu, C.-M. Jian, and C. Xu, Universal features of higher-form symmetries at phase transitions, SciPost Phys. 11, 033 (2021).
- Y.-C. Wang, M. Cheng, and Z. Y. Meng, Scaling of the disorder operator at (2+1)d21𝑑(2+1)d( 2 + 1 ) italic_d u(1) quantum criticality, Phys. Rev. B 104, L081109 (2021).
- M. M. Wolf, Violation of the entropic area law for Fermions, Phys. Rev. Lett. 96, 010404 (2006), arXiv:quant-ph/0503219 .
- D. Gioev and I. Klich, Entanglement entropy of fermions in any dimension and the widom conjecture, Phys. Rev. Lett. 96, 100503 (2006).
- F. D. M. Haldane, Luttinger’s theorem and bosonization of the fermi surface (2005), arXiv:cond-mat/0505529 [cond-mat.str-el] .
- A. Houghton and J. B. Marston, Bosonization and fermion liquids in dimensions greater than one, Phys. Rev. B 48, 7790 (1993), arXiv:cond-mat/9210007 .
- A. C. Neto and E. Fradkin, Bosonization of fermi liquids, Physical Review B 49, 10877 (1994).
- A. C. Neto and E. H. Fradkin, Exact solution of the landau fixed point via bosonization, Physical Review B 51, 4084 (1995).
- W. Ding, A. Seidel, and K. Yang, Entanglement entropy of fermi liquids via multidimensional bosonization, Physical Review X 2, 011012 (2012).
- W. Belzig and Y. V. Nazarov, Full current statistics in diffusive normal-superconductor structures, Phys. Rev. Lett. 87, 067006 (2001).
- L. S. Levitov and M. Reznikov, Counting statistics of tunneling current, Phys. Rev. B 70, 115305 (2004).
- H. F. Song, S. Rachel, and K. Le Hur, General relation between entanglement and fluctuations in one dimension, Phys. Rev. B 82, 012405 (2010).
- P. M. Tam, M. Claassen, and C. L. Kane, Topological multipartite entanglement in a fermi liquid, Phys. Rev. X 12, 031022 (2022).
- B. Estienne, J.-M. Stéphan, and W. Witczak-Krempa, Cornering the universal shape of fluctuations, Nature Commun. 13, 287 (2022), arXiv:2102.06223 [cond-mat.str-el] .
- A. Houghton, H.-J. Kwon, and J. Marston, Multidimensional bosonization, Advances in Physics 49, 141 (2000).
- B. Swingle and T. Senthil, Universal crossovers between entanglement entropy and thermal entropy, Physical Review B 87, 045123 (2013).
- P. Coleman, Introduction to many-body physics (Cambridge University Press, 2015).
- Y. Zang, Y. Gu, and S. Jiang, Detecting quantum anomalies in open systems, arXiv:2312.11188 , arXiv:2312.11188.
- We notice that [34] has an opposite sign in this relation, which would cause instability of the theory even at the critical point.
- B. I. Halperin, P. A. Lee, and N. Read, Theory of the half-filled landau level, Phys. Rev. B 47, 7312 (1993).
- H.-J. Kwon, A. Houghton, and J. Marston, Gauge interactions and bosonized fermion liquids, Physical review letters 73, 284 (1994).
- N. Read, Lowest-landau-level theory of the quantum hall effect: The fermi-liquid-like state of bosons at filling factor one, Phys. Rev. B 58, 16262 (1998).
- Y. Zhang, T. Grover, and A. Vishwanath, Entanglement entropy of critical spin liquids, Phys. Rev. Lett. 107, 067202 (2011).
- R. V. Mishmash and O. I. Motrunich, Entanglement entropy of composite fermi liquid states on the lattice: In support of the widom formula, Phys. Rev. B 94, 081110 (2016).
- X.-C. Wu, to appear.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.