Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

From equations in coordinate space to Picard-Fuchs and back (2404.03069v1)

Published 3 Apr 2024 in hep-th, math-ph, and math.MP

Abstract: We continue the development of a position space approach to equations for Feynman multi-loop integrals. The key idea of the approach is that unintegrated products of Greens functions in position space are still loop integral in momentum space. The natural place to start are the famous banana diagrams, which we explore in this paper. In position space, these are just products of $n$ propagators. Firstly, we explain that these functions satisfy an equation of order $2n$. These should be compared with Picard-Fuchs equations derived for the momentum space integral. We find that the Fourier transform of the position space operator contains the Picard-Fuchs one as a rightmost factor. The order of these operators is a special issue, especially since the order in momentum space is governed by degree in $x$ in position space. For the generic mass case this factorization pattern is complicated and it seems like the order of the Fourier transformed position space operators is much bigger than that of the Picard-Fuchs. Furthermore, one may ask what happens if after factorization we take the Picard-Fuchs operators back into position space. We discover that the result is again factorized, with the rightmost factor being the original position space equation. We demonstrate how this works in examples and discuss implications for more sophisticated Feynman integrals.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. S. Weinzierl, Feynman Integrals. 1, 2022. arXiv:2201.03593 [hep-th].
  2. P. Vanhove, “Feynman integrals, toric geometry and mirror symmetry,” in KMPB Conference: Elliptic Integrals, Elliptic Functions and Modular Forms in Quantum Field Theory, pp. 415–458. 2019. arXiv:1807.11466 [hep-th].
  3. M. Marcolli, “Feynman integrals and motives,” arXiv:0907.0321 [math-ph].
  4. V. Mishnyakov and P. Suprun, “Outlook on Differential Equations for Feynman Integrals (Brief Review),” JETP Lett. 115 no. 8, (2022) 477–483.
  5. K. G. Chetyrkin and F. V. Tkachov, “Integration by parts: The algorithm to calculate β𝛽\betaitalic_β-functions in 4 loops,” Nucl. Phys. B 192 (1981) 159–204.
  6. M. Argeri and P. Mastrolia, “Feynman Diagrams and Differential Equations,” Int. J. Mod. Phys. A 22 (2007) 4375–4436, arXiv:0707.4037 [hep-ph].
  7. E. Nasrollahpoursamami, “Periods of feynman diagrams and gkz d-modules,” arXiv preprint arXiv:1605.04970 (2016) .
  8. L. de la Cruz, “Feynman integrals as A-hypergeometric functions,” JHEP 12 (2019) 123, arXiv:1907.00507 [math-ph].
  9. F. Loebbert, “Integrability for Feynman Integrals,” 12, 2022. arXiv:2212.09636 [hep-th].
  10. V. Kazakov, F. Levkovich-Maslyuk, and V. Mishnyakov, “Integrable Feynman Graphs and Yangian Symmetry on the Loom,” arXiv:2304.04654 [hep-th].
  11. S. Müller-Stach, S. Weinzierl, and R. Zayadeh, “Picard-Fuchs equations for Feynman integrals,” Commun. Math. Phys. 326 (2014) 237–249, arXiv:1212.4389 [hep-ph].
  12. P. Lairez and P. Vanhove, “Algorithms for minimal Picard–Fuchs operators of Feynman integrals,” Lett. Math. Phys. 113 no. 2, (2023) 37, arXiv:2209.10962 [hep-th].
  13. L. de la Cruz and P. Vanhove, “Algorithm for differential equations for Feynman integrals in general dimensions,” arXiv:2401.09908 [hep-th].
  14. V. Mishnyakov, A. Morozov, and P. Suprun, “Position space equations for banana Feynman diagrams,” Nucl. Phys. B 992 (2023) 116245, arXiv:2303.08851 [hep-th].
  15. V. Mishnyakov, A. Morozov, and M. Reva, “On factorization hierarchy of equations for banana Feynman amplitudes,” arXiv:2311.13524 [hep-th].
  16. S. L. Cacciatori, H. Epstein, and U. Moschella, “Banana integrals in configuration space,” Nucl. Phys. B 995 (2023) 116343, arXiv:2304.00624 [hep-th].
  17. S. Groote, J. G. Korner, and A. A. Pivovarov, “On the evaluation of a certain class of Feynman diagrams in x-space: Sunrise-type topologies at any loop order,” Annals Phys. 322 (2007) 2374–2445, arXiv:hep-ph/0506286.
  18. A. Morozov, “Integrability and matrix models,” Phys. Usp. 37 (1994) 1–55, arXiv:hep-th/9303139.
  19. A. Morozov, “Challenges of matrix models,” in NATO Advanced Study Institute and EC Summer School on String Theory: From Gauge Interactions to Cosmology, pp. 129–162. 2, 2005. arXiv:hep-th/0502010.
  20. J. M. Drummond, J. M. Henn, and J. Plefka, “Yangian symmetry of scattering amplitudes in N=4 super Yang-Mills theory,” JHEP 05 (2009) 046, arXiv:0902.2987 [hep-th].
  21. C. Corianò and M. M. Maglio, “The Generalized Hypergeometric Structure of the Ward Identities of CFT’s in Momentum Space in d>2𝑑2d>2italic_d > 2,” Axioms 9 no. 2, (2020) 54, arXiv:2001.09622 [hep-th].
  22. J. Henn, E. Pratt, A.-L. Sattelberger, and S. Zoia, “D𝐷Ditalic_D-Module Techniques for Solving Differential Equations in the Context of Feynman Integrals,” arXiv:2303.11105 [hep-th].
  23. K. Bönisch, C. Duhr, F. Fischbach, A. Klemm, and C. Nega, “Feynman integrals in dimensional regularization and extensions of Calabi-Yau motives,” JHEP 09 (2022) 156, arXiv:2108.05310 [hep-th].
  24. J. L. Bourjaily, A. J. McLeod, C. Vergu, M. Volk, M. Von Hippel, and M. Wilhelm, “Embedding Feynman Integral (Calabi-Yau) Geometries in Weighted Projective Space,” JHEP 01 (2020) 078, arXiv:1910.01534 [hep-th].
  25. J. L. Bourjaily, A. J. McLeod, M. von Hippel, and M. Wilhelm, “Bounded Collection of Feynman Integral Calabi-Yau Geometries,” Phys. Rev. Lett. 122 no. 3, (2019) 031601, arXiv:1810.07689 [hep-th].
  26. L. Adams, C. Bogner, and S. Weinzierl, “The two-loop sunrise integral around four space-time dimensions and generalisations of the Clausen and Glaisher functions towards the elliptic case,” J. Math. Phys. 56 no. 7, (2015) 072303, arXiv:1504.03255 [hep-ph].
  27. H. Komatsu, “An introduction to the theory of hyperfunctions,” in Hyperfunctions and Pseudo-Differential Equations, H. Komatsu, ed., pp. 3–40. Springer Berlin Heidelberg, Berlin, Heidelberg, 1973.
  28. C. Chowdhury, A. Lipstein, J. Mei, I. Sachs, and P. Vanhove, “The Subtle Simplicity of Cosmological Correlators,” arXiv:2312.13803 [hep-th].
  29. S. L. Cacciatori, H. Epstein, and U. Moschella, “Loops in de Sitter space,” arXiv:2403.13145 [hep-th].
  30. S. L. Cacciatori, H. Epstein, and U. Moschella, “Loops in Anti de Sitter space,” arXiv:2403.13142 [hep-th].
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube