Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 98 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 165 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 29 tok/s Pro
2000 character limit reached

Quantum thermodynamics of nonequilibrium processes in lattice gauge theories (2404.02965v2)

Published 3 Apr 2024 in quant-ph, cond-mat.stat-mech, hep-lat, hep-ph, and nucl-th

Abstract: A key objective in nuclear and high-energy physics is to describe nonequilibrium dynamics of matter, e.g., in the early universe and in particle colliders, starting from the Standard Model. Classical-computing methods, via the framework of lattice gauge theory, have experienced limited success in this mission. Quantum simulation of lattice gauge theories holds promise for overcoming computational limitations. Because of local constraints (Gauss's laws), lattice gauge theories have an intricate Hilbert-space structure. This structure complicates the definition of thermodynamic properties of systems coupled to reservoirs during equilibrium and nonequilibrium processes. We show how to define thermodynamic quantities such as work and heat using strong-coupling thermodynamics, a framework that has recently burgeoned within the field of quantum thermodynamics. Our definitions suit instantaneous quenches, simple nonequilibrium processes undertaken in quantum simulators. To illustrate our framework, we compute the work and heat exchanged during a quench in a $\mathbb{Z}_2$ lattice gauge theory coupled to matter in 1+1 dimensions. The thermodynamic quantities, as functions of the quench parameter, evidence a phase transition. For general thermal states, we derive a simple relation between a quantum many-body system's entanglement Hamiltonian, measurable with quantum-information-processing tools, and the Hamiltonian of mean force, used to define strong-coupling thermodynamic quantities.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (88)
  1. J. F. Donoghue, E. Golowich, and B. R. Holstein, Dynamics of the standard model (Cambridge university press, 2014).
  2. M. D. Schwartz, Quantum field theory and the standard model (Cambridge university press, 2014).
  3. A. Pich, The standard model of electroweak interactions, arXiv preprint arXiv:1201.0537  (2012).
  4. R. L. Workman and Others (Particle Data Group), Review of Particle Physics, PTEP 2022, 083C01 (2022).
  5. E. Fradkin, Field theories of condensed matter physics (Cambridge University Press, 2013).
  6. X.-G. Wen, Topological orders in rigid states, International Journal of Modern Physics B 4, 239 (1990).
  7. M. A. Levin and X.-G. Wen, String-net condensation: A physical mechanism for topological phases, Physical Review B 71, 045110 (2005).
  8. A. Y. Kitaev, Fault-tolerant quantum computation by anyons, Annals of physics 303, 2 (2003).
  9. A. Kitaev, Anyons in an exactly solved model and beyond, Annals of Physics 321, 2 (2006).
  10. S. Das Sarma, M. Freedman, and C. Nayak, Topological quantum computation, Physics Today 59, 32 (2006).
  11. V. Lahtinen and J. K. Pachos, A Short Introduction to Topological Quantum Computation, SciPost Phys. 3, 021 (2017).
  12. R. Vogt, Ultrarelativistic heavy-ion collisions (Elsevier, 2007).
  13. W. Florkowski, Phenomenology of ultra-relativistic heavy-ion collisions (World Scientific Publishing Company, 2010).
  14. P. J. E. Peebles, Principles of physical cosmology, Vol. 27 (Princeton university press, 1993).
  15. E. Kolb, The early universe (CRC press, 2018).
  16. J. B. Kogut and M. A. Stephanov, The phases of quantum chromodynamics: From confinement to extreme environments, Vol. 21 (Cambridge University Press, 2004).
  17. K. G. Wilson, Confinement of quarks, Physical review D 10, 2445 (1974).
  18. J. Kogut and L. Susskind, Hamiltonian formulation of wilson’s lattice gauge theories, Physical Review D 11, 395 (1975).
  19. J. B. Kogut, An introduction to lattice gauge theory and spin systems, Reviews of Modern Physics 51, 659 (1979).
  20. M. Creutz, Quarks, gluons and lattices (Cambridge University Press, 1983).
  21. M. Creutz, L. Jacobs, and C. Rebbi, Monte carlo computations in lattice gauge theories, Physics Reports 95, 201 (1983).
  22. H.-T. Ding, F. Karsch, and S. Mukherjee, Thermodynamics of strong-interaction matter from Lattice QCD, International Journal of Modern Physics E 24, 1530007 (2015).
  23. C. Ratti, Lattice QCD and heavy ion collisions: a review of recent progress, Reports on Progress in Physics 81, 084301 (2018).
  24. O. Philipsen, Constraining the qcd phase diagram at finite temperature and density, arXiv preprint arXiv:1912.04827  (2019).
  25. J. N. Guenther, Overview of the QCD phase diagram, The European Physical Journal A 57, 1 (2021).
  26. K. Nagata, Finite-density lattice qcd and sign problem: Current status and open problems, Progress in Particle and Nuclear Physics , 103991 (2022).
  27. M. Troyer and U.-J. Wiese, Computational complexity and fundamental limitations to fermionic quantum monte carlo simulations, Physical review letters 94, 170201 (2005).
  28. C. Gattringer and K. Langfeld, Approaches to the sign problem in lattice field theory, International Journal of Modern Physics A 31, 1643007 (2016).
  29. G. Pan and Z. Y. Meng, Sign problem in quantum monte carlo simulation, arXiv preprint arXiv:2204.08777  (2022).
  30. M. C. Banuls and K. Cichy, Review on novel methods for lattice gauge theories, Reports on Progress in Physics 83, 024401 (2020).
  31. Y. Meurice, R. Sakai, and J. Unmuth-Yockey, Tensor lattice field theory for renormalization and quantum computing, Reviews of modern physics 94, 025005 (2022).
  32. N. Klco, A. Roggero, and M. J. Savage, Standard model physics and the digital quantum revolution: thoughts about the interface, Reports on Progress in Physics 85, 064301 (2022).
  33. S. Vinjanampathy and J. Anders, Quantum thermodynamics, Contemporary Physics 57, 545 (2016), https://doi.org/10.1080/00107514.2016.1201896 .
  34. N. Y. Halpern, Quantum Steampunk: The Physics of Yesterday’s Tomorrow (JHU Press, 2022).
  35. H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford U. Press, Oxford, 2007).
  36. S. Deffner and S. Campbell, The principles of modern thermodynamics, in Quantum Thermodynamics, 2053-2571 (Morgan & Claypool Publishers, 2019) pp. 1–1 to 2–37.
  37. A. Polkovnikov and D. Sels, Thermalization in small quantum systems, Science 353, 752 (2016).
  38. U. Seifert, First and second law of thermodynamics at strong coupling, Phys. Rev. Lett. 116, 020601 (2016).
  39. C. Jarzynski, Stochastic and macroscopic thermodynamics of strongly coupled systems, Phys. Rev. X 7, 011008 (2017).
  40. P. Strasberg and M. Esposito, Non-markovianity and negative entropy production rates, Phys. Rev. E 99, 012120 (2019).
  41. A. Rivas, Strong coupling thermodynamics of open quantum systems, Phys. Rev. Lett. 124, 160601 (2020).
  42. P. Strasberg, Thermodynamics of quantum causal models: An inclusive, hamiltonian approach, Quantum 4, 240 (2020).
  43. Y.-Y. Xu, J. Gong, and W.-M. Liu, Quantum thermodynamics with strong system-bath coupling: A mapping approach, arXiv preprint arXiv:2304.08268  (2023).
  44. Á. Rivas, Quantum thermodynamics in the refined weak coupling limit, Entropy 21, 10.3390/e21080725 (2019).
  45. M. Campisi, P. Talkner, and P. Hänggi, Thermodynamics and fluctuation theorems for a strongly coupled open quantum system: an exactly solvable case, Journal of Physics A: Mathematical and Theoretical 42, 392002 (2009).
  46. P. Buividovich and M. Polikarpov, Entanglement entropy in gauge theories and the holographic principle for electric strings, Physics Letters B 670, 141 (2008).
  47. W. Donnelly, Decomposition of entanglement entropy in lattice gauge theory, Physical Review D 85, 085004 (2012).
  48. H. Casini, M. Huerta, and J. A. Rosabal, Remarks on entanglement entropy for gauge fields, Physical Review D 89, 085012 (2014).
  49. D. Radicevic, Notes on entanglement in abelian gauge theories, arXiv preprint arXiv:1404.1391  (2014).
  50. R. M. Soni and S. P. Trivedi, Aspects of entanglement entropy for gauge theories, Journal of High Energy Physics 2016, 1 (2016).
  51. A. Mitra, Quantum quench dynamics, Annual Review of Condensed Matter Physics 9, 245 (2018).
  52. H. Li and F. D. M. Haldane, Entanglement spectrum as a generalization of entanglement entropy: Identification of topological order in non-abelian fractional quantum hall effect states, Phys. Rev. Lett. 101, 010504 (2008).
  53. C. Jarzynski, Nonequilibrium work theorem for a system strongly coupled to a thermal environment, Journal of Statistical Mechanics: Theory and Experiment 2004, P09005 (2004).
  54. P. Talkner and P. Hänggi, Colloquium: Statistical mechanics and thermodynamics at strong coupling: Quantum and classical, Reviews of Modern Physics 92, 041002 (2020).
  55. Boltzmann’s constant is set to one throughout.
  56. J. Eisert, M. Friesdorf, and C. Gogolin, Quantum many-body systems out of equilibrium, Nature Physics 11, 124 (2015).
  57. D. E. Kharzeev and Y. Kikuchi, Real-time chiral dynamics from a digital quantum simulation, Physical Review Research 2, 023342 (2020).
  58. H.-Y. Huang, R. Kueng, and J. Preskill, Predicting many properties of a quantum system from very few measurements, Nature Physics 16, 1050 (2020).
  59. M. Dalmonte, B. Vermersch, and P. Zoller, Quantum simulation and spectroscopy of entanglement hamiltonians, Nature Physics 14, 827 (2018).
  60. J. Bringewatt, J. Kunjummen, and N. Mueller, Randomized measurement protocols for lattice gauge theories, arXiv preprint arXiv:2303.15519  (2023).
  61. N. Mueller (2024), unpublished notes.
  62. Y. Wu and J. B. Wang, Estimating gibbs partition function with quantum clifford sampling, Quantum Science and Technology 7, 025006 (2022).
  63. R. Kawai, J. M. R. Parrondo, and C. V. den Broeck, Dissipation: The phase-space perspective, Phys. Rev. Lett. 98, 080602 (2007).
  64. C. Jarzynski, Equalities and inequalities: irreversibility and the second law of thermodynamics at the nanoscale, Annu. Rev. Cond. Matt. Phys. 2, 329 (2011).
  65. J. R. Stryker, Oracles for gauss’s law on digital quantum computers, Physical Review A 99, 042301 (2019).
  66. I. Raychowdhury and J. R. Stryker, Solving gauss’s law on digital quantum computers with loop-string-hadron digitization, Physical Review Research 2, 033039 (2020).
  67. E. Zohar and B. Reznik, Confinement and lattice quantum-electrodynamic electric flux tubes simulated with ultracold atoms, Phys. Rev. Lett. 107, 275301 (2011).
  68. E. Zohar, J. I. Cirac, and B. Reznik, Simulating (2+1212+12 + 1)-Dimensional Lattice QED with Dynamical Matter Using Ultracold Atoms, Phys. Rev. Lett. 110, 055302 (2013).
  69. Z. Davoudi, N. Mueller, and C. Powers, Towards quantum computing phase diagrams of gauge theories with thermal pure quantum states, Physical Review Letters 131, 081901 (2023).
  70. J. C. Halimeh and P. Hauke, Stabilizing gauge theories in quantum simulators: A brief review (2022), arXiv:2204.13709 [cond-mat.quant-gas] .
  71. The gauge link and electric field are two conjugate operators in a gauge theory, similarly to position and momentum in quantum mechanics.
  72. Numerical computations of this work are performed by manually restricting to the physical Hilbert space.
  73. B. A. Bernevig, Topological insulators and topological superconductors (Princeton university press, 2013).
  74. K. Seo, C. Zhang, and S. Tewari, Thermodynamic signatures for topological phase transitions to majorana and weyl superfluids in ultracold fermi gases, Physical Review A 87, 063618 (2013).
  75. S. Kempkes, A. Quelle, and C. M. Smith, Universalities of thermodynamic signatures in topological phases, Scientific reports 6, 38530 (2016).
  76. A. Carollo, D. Valenti, and B. Spagnolo, Geometry of quantum phase transitions, Physics Reports 838, 1 (2020).
  77. M. Heyl, Dynamical quantum phase transitions: a review, Reports on Progress in Physics 81, 054001 (2018).
  78. N. Klco, M. J. Savage, and J. R. Stryker, SU (2) non-Abelian gauge field theory in one dimension on digital quantum computers, Physical Review D 101, 074512 (2020).
  79. A. Ciavarella, N. Klco, and M. J. Savage, Trailhead for quantum simulation of SU(3) Yang-Mills lattice gauge theory in the local multiplet basis, Phys. Rev. D 103, 094501 (2021).
  80. S. Notarnicola, M. Collura, and S. Montangero, Real-time-dynamics quantum simulation of (1+ 1)-dimensional lattice qed with rydberg atoms, Physical Review Research 2, 013288 (2020).
  81. F. M. Surace and A. Lerose, Scattering of mesons in quantum simulators, New Journal of Physics 23, 062001 (2021).
  82. G.-X. Su, J. Osborne, and J. C. Halimeh, A cold-atom particle collider, arXiv preprint arXiv:2401.05489  (2024).
  83. Z. Davoudi, C.-C. Hsieh, and S. V. Kadam, Scattering wave packets of hadrons in gauge theories: Preparation on a quantum computer, arXiv preprint arXiv:2402.00840  (2024).
  84. K. Zawadzki, R. M. Serra, and I. D’Amico, Work-distribution quantumness and irreversibility when crossing a quantum phase transition in finite time, Physical Review Research 2, 033167 (2020).
  85. Q. Wang and H. Quan, Probing the excited-state quantum phase transition through statistics of loschmidt echo and quantum work, Physical Review E 96, 032142 (2017).
  86. S. D. Geraedts, R. Nandkishore, and N. Regnault, Many-body localization and thermalization: Insights from the entanglement spectrum, Physical Review B 93, 174202 (2016).
  87. N. Mueller, T. V. Zache, and R. Ott, Thermalization of gauge theories from their entanglement spectrum, Physical Review Letters 129, 011601 (2022).
  88. C. De Sa, Low-precision arithmetic, CS4787 Lecture 21, Cornell University  (2020).
Citations (4)

Summary

  • The paper introduces a quantum thermodynamic framework to analyze nonequilibrium processes in lattice gauge theories (LGTs), providing methods to define and compute quantities like work and heat applicable to strong-coupling regimes and feasible for quantum simulation.
  • Key theoretical developments include adapting thermodynamic quantity definitions for LGTs and establishing a link between the measurable entanglement Hamiltonian and the Hamiltonian of mean force, enabling computation from partial system observations.
  • Numerical exploration demonstrates that thermodynamic signatures, such as dissipated work, can reliably signal phase transitions in a $Z_2$ LGT model, highlighting the potential of using quantum simulation to study complex LGT phenomena beyond classical methods.

Quantum Thermodynamics of Nonequilibrium Processes in Lattice Gauge Theories

The paper "Quantum Thermodynamics of Nonequilibrium Processes in Lattice Gauge Theories" presents a theoretical framework for analyzing nonequilibrium thermodynamic processes within the field of lattice gauge theories (LGTs). Authored by Zohreh Davoudi et al., this work situates itself at the intersection of nuclear and high-energy physics, condensed matter, and quantum information science. It aims to overcome the computational limitations of classical simulation methods in studying the nonequilibrium dynamics of strongly interacting gauge theories, as are prominent in the early universe and particle collider environments.

Summary and Core Contributions

This research introduces a quantum thermodynamic perspective to LGTs, focusing on strong-coupling regimes. Traditional approaches to LGT have been impeded by significant challenges, such as the sign problem in Monte-Carlo methods when applied to finite density systems and out-of-equilibrium processes. The authors argue for the applicability of quantum simulators, which do not suffer from such computational problems and are adept at studying thermodynamics within the quantum domain.

The paper achieves the following:

  1. Thermodynamic Definitions in LGT: The authors develop a framework to define thermodynamic quantities like work and heat in systems governed by LGTs. These definitions are adapted to the context of strong-coupling thermodynamics, essential due to the non-negligible contributions of interaction energies between subsystems.
  2. Instantaneous Quenches: The work describes methods to compute work and heat exchanges during instantaneous quenches—a nonequilibrium protocol feasible in quantum simulators. Such quenches are explored through a specific LGT model using a Z2Z_2 gauge theory coupled with matter in one spatial dimension.
  3. Hamiltonian of Mean Force: A pivotal theoretical development relates the entanglement Hamiltonian—a tool that can be practically measured in experimental setups—to the Hamiltonian of mean force. This connection facilitates the computation of thermodynamic quantities from partial observations of the whole system.

Theoretical and Practical Implications

The implications of this research reach both theoretical expansions of quantum thermodynamics and practical applications in quantum simulations:

  • Theoretical Expansion: By systematically applying quantum thermodynamic concepts to LGTs, this work bridges quantum statistical mechanics and gauge theory, enabling a new layer of analysis for gauge-theoretic models. This bridging is crucial for studying scenarios like quantum chromodynamics (QCD) under nonequilibrium conditions, which are relevant to high-energy physics contexts such as particle collisions.
  • Practical Simulation: The framework provides a pathway for efficiently studying work and heat in LGTs using quantum simulators. This capability is especially promising for simulating early universe phenomena and complex nonequilibrium processes, potentially offering insights unreachable by classical methods.

Numerical Results and Future Directions

A noteworthy element of the paper is its numerical exploration of a model quench in a Z2Z_2 LGT. The authors demonstrate that thermodynamic signatures, such as the dissipated work and changes in entropy, robustly signal phase transitions. These results underline the effectiveness of their proposed measurement protocols.

Future research directions are abundant and can include:

  • Scaling up to more complex non-Abelian gauge theories or higher dimensional settings.
  • Investigating whether the proposed thermodynamic measures can detect topological or dynamical phase transitions.
  • Extending this framework to simulate realistic scattering processes pertinent to nuclear and particle physics.

The presented framework thus serves both as a proof-of-concept for the application of quantum thermodynamics to LGTs and as a springboard for future experimental and theoretical work in the field. This paper marks a significant step in employing quantum simulation as a tool to address complex problems in gauge theory, with profound implications for understanding the fundamental forces of nature.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 4 posts and received 100 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube