Quantum many-body scars with unconventional superconducting pairing symmetries via multibody interactions (2404.02914v3)
Abstract: We present a systematic framework to construct model Hamiltonians that have unconventional superconducting pairing states as exact energy eigenstates, by incorporating multibody interactions (i.e., interactions among more than two particles). The multibody interactions are introduced in a form of the local density-density coupling in such a way that any pair configuration in real space has a constant interaction energy by canceling the two-body and multibody interactions. Our approach is applicable to both spinless and spinful models in any spatial dimensions and on any bipartite lattices, facilitating an exhaustive extension of Yang's $s$-wave $\eta$-pairing state to various other unconventional pairing symmetries ($p$-wave, $d$-wave, $f$-wave, etc.). Particularly, the constructed eigenstates have off-site pairs with finite center-of-mass momentum, which leads to superconducting states with either even-parity and spin-triplet or odd-parity and spin-singlet symmetry. We verify that the two-dimensional spinful Hubbard model on a square lattice with the multibody interactions has the spin-triplet $d$-wave pairing state as an energy eigenstate, which can be regarded as a quantum many-body scar state as evidenced from the numerical analysis of the pair correlation function, entanglement entropy, and level statistics. We also discuss other examples, including spin-triplet $f$-wave pairing states on a honeycomb lattice and spin-singlet $p$-wave pairing states in a one-dimensional chain. These findings open up the possibility of realizing nonequilibrium unconventional superconductivity in a long-lived manner protected against thermalization.
- L. D. Marin Bukov and A. Polkovnikov, Universal high-frequency behavior of periodically driven systems: from dynamical stabilization to Floquet engineering, Adv. Phys. 64, 139 (2015).
- T. Oka and S. Kitamura, Floquet Engineering of Quantum Materials, Annu. Rev. Condens. Matter Phys. 10, 387 (2019).
- N. Tsuji, Floquet states, in Encyclopedia of Condensed Matter Physics (Second Edition), edited by T. Chakraborty (Academic Press, Oxford, 2024) second edition ed., pp. 967–980.
- H. Chono, K. Takasan, and Y. Yanase, Laser-induced topological s𝑠sitalic_s-wave superconductivity in bilayer transition metal dichalcogenides, Phys. Rev. B 102, 174508 (2020).
- P. Wenk, M. Grifoni, and J. Schliemann, Topological transitions in two-dimensional Floquet superconductors, Phys. Rev. B 106, 134508 (2022).
- S. Kitamura and H. Aoki, Floquet topological superconductivity induced by chiral many-body interaction, Commun. Phys. 5, 174 (2022).
- J. Cayao, C. Triola, and A. M. Black-Schaffer, Floquet engineering bulk odd-frequency superconducting pairs, Phys. Rev. B 103, 104505 (2021).
- J. Cayao and A. M. Black-Schaffer, Exceptional odd-frequency pairing in non-Hermitian superconducting systems, Phys. Rev. B 105, 094502 (2022).
- M. Malakhov and M. Avdeev, Non-equilibrium d𝑑ditalic_d-wave pair density wave order parameter in superconducting cuprates, Phys. C: Supercond. its Appl. 581, 1353820 (2021).
- N. Shiraishi and T. Mori, Systematic Construction of Counterexamples to the Eigenstate Thermalization Hypothesis, Phys. Rev. Lett. 119, 030601 (2017).
- J. M. Deutsch, Quantum statistical mechanics in a closed system, Phys. Rev. A 43, 2046 (1991).
- M. Srednicki, Chaos and quantum thermalization, Phys. Rev. E 50, 888 (1994).
- M. Rigol, V. Dunjko, and M. Olshanii, Thermalization and its mechanism for generic isolated quantum systems, Nature 452, 854 (2008).
- J. M. Deutsch, Eigenstate thermalization hypothesis, Rep. Prog. Phys. 81, 082001 (2018).
- M. Serbyn, D. A. Abanin, and Z. Papić, Quantum many-body scars and weak breaking of ergodicity, Nat. Phys. 17, 675 (2021).
- S. Moudgalya, B. A. Bernevig, and N. Regnault, Quantum many-body scars and Hilbert space fragmentation: a review of exact results, Rep. Prog. Phys. 85, 086501 (2022).
- M. Schecter and T. Iadecola, Weak Ergodicity Breaking and Quantum Many-Body Scars in Spin-1 XY𝑋𝑌XYitalic_X italic_Y Magnets, Phys. Rev. Lett. 123, 147201 (2019).
- S. Pai and M. Pretko, Dynamical Scar States in Driven Fracton Systems, Phys. Rev. Lett. 123, 136401 (2019).
- J. Ren, C. Liang, and C. Fang, Quasisymmetry Groups and Many-Body Scar Dynamics, Phys. Rev. Lett. 126, 120604 (2021).
- X. Yu, D. Luo, and B. K. Clark, Beyond many-body localized states in a spin-disordered Hubbard model, Phys. Rev. B 98, 115106 (2018).
- C.-J. Lin, V. Calvera, and T. H. Hsieh, Quantum many-body scar states in two-dimensional Rydberg atom arrays, Phys. Rev. B 101, 220304 (2020).
- Y. Kuno, T. Mizoguchi, and Y. Hatsugai, Flat band quantum scar, Phys. Rev. B 102, 241115 (2020).
- S. Sugiura, T. Kuwahara, and K. Saito, Many-body scar state intrinsic to periodically driven system, Phys. Rev. Res. 3, L012010 (2021).
- K. Omiya and M. Müller, Quantum many-body scars in bipartite Rydberg arrays originating from hidden projector embedding, Phys. Rev. A 107, 023318 (2023a).
- K. Omiya and M. Müller, Fractionalization paves the way to local projector embeddings of quantum many-body scars, Phys. Rev. B 108, 054412 (2023b).
- R. Kaneko, M. Kunimi, and I. Danshita, Quantum many-body scars in the Bose-Hubbard model with a three-body constraint, Phys. Rev. A 109, L011301 (2024).
- C. Matsui, Exactly solvable subspaces of nonintegrable spin chains with boundaries and quasiparticle interactions, Phys. Rev. B 109, 104307 (2024).
- C. N. Yang, η𝜂\etaitalic_η pairing and off-diagonal long-range order in a Hubbard model, Phys. Rev. Lett. 63, 2144 (1989).
- C. N. Yang and S. Zhang, SO4subscriptSO4{\mathrm{SO}}_{4}roman_SO start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT SYMMETRY IN A HUBBARD MODEL, Mod. Phys. Lett. B 04, 759 (1990).
- O. Vafek, N. Regnault, and B. A. Bernevig, Entanglement of exact excited eigenstates of the Hubbard model in arbitrary dimension, SciPost Phys. 3, 043 (2017).
- K. Li, η𝜂\etaitalic_η-pairing in correlated fermion models with spin-orbit coupling, Phys. Rev. B 102, 165150 (2020).
- D. K. Mark and O. I. Motrunich, η𝜂\etaitalic_η-pairing states as true scars in an extended Hubbard model, Phys. Rev. B 102, 075132 (2020).
- S. Moudgalya, N. Regnault, and B. A. Bernevig, η𝜂\etaitalic_η-pairing in Hubbard models: From spectrum generating algebras to quantum many-body scars, Phys. Rev. B 102, 085140 (2020).
- P. Kolb and K. Pakrouski, Stability of the Many-Body Scars in Fermionic Spin-1/2 Models, PRX Quantum 4, 040348 (2023).
- S. Hoshino, Mean-field description of odd-frequency superconductivity with staggered ordering vector, Phys. Rev. B 90, 115154 (2014).
- N. Tsuji, M. Nakagawa, and M. Ueda, Tachyonic and Plasma Instabilities of η𝜂\etaitalic_η-Pairing States Coupled to Electromagnetic Fields, arXiv:2103.01547 .
- N. Shibata, N. Yoshioka, and H. Katsura, Onsager’s Scars in Disordered Spin Chains, Phys. Rev. Lett. 124, 180604 (2020).
- K. Tamura and H. Katsura, Quantum many-body scars of spinless fermions with density-assisted hopping in higher dimensions, Phys. Rev. B 106, 144306 (2022).
- H. Zhai, Two generalizations of η𝜂\etaitalic_η pairing in extended Hubbard models, Phys. Rev. B 71, 012512 (2005).
- H. Yoshida and H. Katsura, Exact eigenstates of extended SU(N)SU𝑁\mathrm{SU}(N)roman_SU ( italic_N ) Hubbard models: Generalization of η𝜂\etaitalic_η-pairing states with N𝑁Nitalic_N-particle off-diagonal long-range order, Phys. Rev. B 105, 024520 (2022).
- S. Ray, Y. Murakami, and P. Werner, Nonthermal superconductivity in photodoped multiorbital Hubbard systems, Phys. Rev. B 108, 174515 (2023).
- J. Linder and A. V. Balatsky, Odd-frequency superconductivity, Rev. Mod. Phys. 91, 045005 (2019).
- Y.-M. Lu, T. Xiang, and D.-H. Lee, Underdoped superconducting cuprates as topological superconductors, Nat. Phys. 10, 634 (2014).
- M. Georgiou and G. Varelogiannis, Pair density waves in spinless media, Phys. Rev. B 102, 094514 (2020).
- A. Y. Kitaev, Unpaired Majorana fermions in quantum wires, Phys.-Usp. 44, 131 (2001).
- D. N. Page, Average entropy of a subsystem, Phys. Rev. Lett. 71, 1291 (1993).
- H. Bruus and J.-C. Angl‘es d’Auriac, Energy level statistics of the two-dimensional Hubbard model at low filling, Phys. Rev. B 55, 9142 (1997).
- S. Kitamura and H. Aoki, η𝜂\etaitalic_η-pairing superfluid in periodically-driven fermionic Hubbard model with strong attraction, Phys. Rev. B 94, 174503 (2016).
- F. Peronaci, O. Parcollet, and M. Schiró, Enhancement of local pairing correlations in periodically driven Mott insulators, Phys. Rev. B 101, 161101 (2020).
- M. W. Cook and S. R. Clark, Controllable finite-momenta dynamical quasicondensation in the periodically driven one-dimensional Fermi-Hubbard model, Phys. Rev. A 101, 33604 (2020).
- X. M. Yang and Z. Song, Dynamic transition from insulating state to η𝜂\etaitalic_η-pairing state in a composite non-Hermitian system, Phys. Rev. B 105, 195132 (2022).
- A. Kantian, A. J. Daley, and P. Zoller, η𝜂\etaitalic_η Condensate of Fermionic Atom Pairs via Adiabatic State Preparation, Phys. Rev. Lett. 104, 240406 (2010).
- L. Gotta, S. Moudgalya, and L. Mazza, Asymptotic Quantum Many-Body Scars, Phys. Rev. Lett. 131, 190401 (2023).
- R. M. Nandkishore and M. Hermele, Fractons, Annu. Rev. Condens. Matter Phys. 10, 295 (2019).
- M. Pretko, X. Chen, and Y. You, Fracton phases of matter, Int. J. Mod. Phys. A 35, 2030003 (2020).
- H. B. Xavier and R. G. Pereira, Fractons from a liquid of singlet pairs, Phys. Rev. B 103, 085101 (2021).
- H. P. Büchler, A. Micheli, and P. Zoller, Three-body interactions with cold polar molecules, Nat. Phys. 3, 726 (2007).
- J. Han, Direct evidence of three-body interactions in a cold Rb85superscriptRb85{}^{85}\mathrm{Rb}start_FLOATSUPERSCRIPT 85 end_FLOATSUPERSCRIPT roman_Rb Rydberg gas, Phys. Rev. A 82, 052501 (2010).
- H.-W. Hammer, A. Nogga, and A. Schwenk, Colloquium : Three-body forces: From cold atoms to nuclei, Rev. Mod. Phys. 85, 197 (2013).
- J. Ren, Y.-Z. Wu, and X.-F. Xu, Expansion dynamics in a one-dimensional hard-core boson model with three-body interactions, Sci. Rep. 5, 14743 (2015).
- M. Valiente, Three-body repulsive forces among identical bosons in one dimension, Phys. Rev. A 100, 013614 (2019).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.