Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 201 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Invariant kernels on the space of complex covariance matrices (2404.02169v3)

Published 28 Mar 2024 in math.FA, math.ST, and stat.TH

Abstract: The present work develops certain analytical tools required to construct and compute invariant kernels on the space of complex covariance matrices. The main result is the $\mathrm{L}1$--Godement theorem, which states that any invariant kernel, which is (in a certain natural sense) also integrable, can be computed by taking the inverse spherical transform of a positive function. General expressions for inverse spherical transforms are then provided, which can be used to explore new families of invariant kernels, at a rather moderate computational cost. A further, alternative approach for constructing new invariant kernels is also introduced, based on Ramanujan's master theorem for symmetric cones. This leads to a novel closed-form invariant kernel, called the Beta-prime kernel. Numerical experiments highlight the computational and performance advantages of this kernel, especially in the context of two-sample hypothesis testing.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.