Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 104 tok/s
Gemini 3.0 Pro 36 tok/s Pro
Gemini 2.5 Flash 133 tok/s Pro
Kimi K2 216 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Generalized Calogero-Moser system and supergroup gauge origami (2404.01844v3)

Published 2 Apr 2024 in hep-th

Abstract: We study the integrability and the Bethe/Gauge correspondence of the Generalized Calogero-Moser system proposed by Berntson, Langmann and Lenells which we call the elliptic quadruple Calogero-Moser system (eqCM). We write down the Dunkl operators which give commuting Hamiltonians of the quantum integrable system. We identify the gauge theory in correspondence is a supergroup version of the gauge origami, from which we construct the transfer matrix of the eqCM system.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (76)
  1. B. K. Berntson, E. Langmann, and J. Lenells, “Conformal field theory, solitons, and elliptic Calogero–Sutherland models,” arXiv:2302.11658 [math-ph].
  2. N. Seiberg and E. Witten, “Gauge dynamics and compactification to three-dimensions,” in The mathematical beauty of physics: A memorial volume for Claude Itzykson, vol. 24 of Adv. Ser. Math. Phys., pp. 333–366. World Scientific, 1997. arXiv:hep-th/9607163 [hep-th].
  3. N. Seiberg and E. Witten, “Monopoles, duality and chiral symmetry breaking in N=2𝑁2N=2italic_N = 2 supersymmetric QCD,” Nucl. Phys. B 431 (1994) 484–550, arXiv:hep-th/9408099.
  4. N. Seiberg and E. Witten, “Electric - magnetic duality, monopole condensation, and confinement in N=2𝑁2N=2italic_N = 2 supersymmetric Yang-Mills theory,” Nucl. Phys. B 426 (1994) 19–52, arXiv:hep-th/9407087. [Erratum: Nucl.Phys.B 430, 485–486 (1994)].
  5. N. A. Nekrasov and S. L. Shatashvili, “Supersymmetric vacua and Bethe ansatz,” Nucl. Phys. B Proc. Suppl. 192-193 (2009) 91–112, arXiv:0901.4744 [hep-th].
  6. N. Nekrasov, A. Rosly, and S. Shatashvili, “Darboux coordinates, Yang-Yang functional, and gauge theory,” Nucl.Phys.Proc.Suppl. 216 (2011) 69–93, arXiv:1103.3919 [hep-th].
  7. N. A. Nekrasov and S. L. Shatashvili, “Quantization of Integrable Systems and Four Dimensional Gauge Theories,” in XVIth International Congress on Mathematical Physics, pp. 265–289. 2009. arXiv:0908.4052 [hep-th].
  8. H.-Y. Chen, N. Dorey, T. J. Hollowood, and S. Lee, “A New 2d/4d Duality via Integrability,” JHEP 09 (2011) 040, arXiv:1104.3021 [hep-th].
  9. N. Dorey, S. Lee, and T. J. Hollowood, “Quantization of Integrable Systems and a 2d/4d Duality,” JHEP 10 (2011) 077, arXiv:1103.5726 [hep-th].
  10. E. J. Martinec and N. P. Warner, “Integrable systems and supersymmetric gauge theory,” Nucl. Phys. B459 (1996) 97–112, arXiv:hep-th/9509161 [hep-th].
  11. N. Lee and N. Nekrasov, “Quantum spin systems and supersymmetric gauge theories. Part I,” JHEP 03 (2021) 093, arXiv:2009.11199 [hep-th].
  12. R. Donagi and E. Witten, “Supersymmetric Yang–Mills theory and integrable systems,” Nucl. Phys. B460 (1996) 299–334, arXiv:hep-th/9510101 [hep-th].
  13. E. D’Hoker and D. H. Phong, “Calogero–Moser systems in SU(N𝑁Nitalic_N) Seiberg-Witten theory,” Nucl. Phys. B513 (1998) 405–444, arXiv:hep-th/9709053 [hep-th].
  14. N. Nekrasov and V. Pestun, “Seiberg-Witten Geometry of Four-Dimensional 𝒩=2𝒩2\mathcal{N}=2caligraphic_N = 2 Quiver Gauge Theories,” SIGMA 19 (2023) 047, arXiv:1211.2240 [hep-th].
  15. H. Kanno and Y. Tachikawa, “Instanton counting with a surface operator and the chain-saw quiver,” JHEP 06 (2011) 119, arXiv:1105.0357 [hep-th].
  16. H. Nakajima, “Handsaw quiver varieties and finite W-algebras,” Moscow Math. J. 12 (2012) 633, arXiv:1107.5073 [math.QA].
  17. N. Nekrasov, “BPS/CFT correspondence V: BPZ and KZ equations from qq-characters,” arXiv:1711.11582 [hep-th].
  18. H.-Y. Chen, T. Kimura, and N. Lee, “Quantum Elliptic Calogero-Moser Systems from Gauge Origami,” JHEP 02 (2020) 108, arXiv:1908.04928 [hep-th].
  19. S. Jeong, N. Lee, and N. Nekrasov, “Parallel surface defects, Hecke operators, and quantum Hitchin system,” arXiv:2304.04656 [hep-th].
  20. S. Jeong, N. Lee, and N. Nekrasov, “Intersecting defects in gauge theory, quantum spin chains, and Knizhnik-Zamolodchikov equations,” JHEP 10 (2021) 120, arXiv:2103.17186 [hep-th].
  21. S. Jeong and N. Lee, “Bispectral duality and separation of variables from surface defect transition,” arXiv:2402.13889 [hep-th].
  22. S. Jeong, N. Lee, and N. Nekrasov, “di-Langlands correspondence and extended observables,” arXiv:2402.13888 [hep-th].
  23. T. Okuda and T. Takayanagi, “Ghost D-branes,” JHEP 03 (2006) 062, arXiv:hep-th/0601024 [hep-th].
  24. R. Dijkgraaf, B. Heidenreich, P. Jefferson, and C. Vafa, “Negative Branes, Supergroups and the Signature of Spacetime,” JHEP 02 (2018) 050, arXiv:1603.05665 [hep-th].
  25. N. Nekrasov and N. Piazzalunga, “Magnificent Four with Colors,” Commun. Math. Phys. 372 no. 2, (2019) 573–597, arXiv:1808.05206 [hep-th].
  26. C. Vafa, “Brane / anti-brane systems and U(N|Mconditional𝑁𝑀N|Mitalic_N | italic_M) supergroup,” arXiv:hep-th/0101218 [hep-th].
  27. T. Kimura and V. Pestun, “Super instanton counting and localization,” arXiv:1905.01513 [hep-th].
  28. T. Kimura, “Aspects of supergroup gauge theory,” Int. J. Mod. Phys. A 38 no. 03, (2023) 2330001, arXiv:2301.05927 [hep-th].
  29. S. N. M. Ruijsenaars, “Systems of Calogero–Moser Type,” in Particles and Fields, CRM Series in Mathematical Physics, pp. 251–352. Springer New York, 1999.
  30. J. M. Evans and J. O. Madsen, “Dynkin diagrams and integrable models based on Lie superalgebras,” Nucl. Phys. B503 (1997) 715–746, arXiv:hep-th/9703065 [hep-th].
  31. E. van der Lende, “Super-Toda lattices,” J. Math. Phys. 35 no. 3, (1994) 1233–1251.
  32. N. Beisert and M. Staudacher, “The 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 SYM integrable super spin chain,” Nucl. Phys. B670 (2003) 439–463, arXiv:hep-th/0307042 [hep-th].
  33. N. Nekrasov, “Superspin chains and supersymmetric gauge theories,” JHEP 03 (2019) 102, arXiv:1811.04278 [hep-th].
  34. A. Veselov, M. Feigin, and O. Chalykh, “New integrable deformations of quantum Calogero-Moser problem,” Russian Mathematical Surveys 51 no. 3, (1996) 573–574.
  35. A. Sergeev and A. Veselov, “Deformed quantum Calogero-Moser problems and Lie superalgebras,” Commun. Math. Phys. 245 (2004) 249–278, arXiv:math-ph/0303025 [math-ph].
  36. A. Sergeev, “Superanalogs of the Calogero operators and Jack polynomials,” J. Nonlin. Math. Phys. 8 no. 1, (2001) 59–64, arXiv:math/0106222 [math.RT].
  37. F. Atai, M. Hallnäs, and E. Langmann, “Orthogonality of super-Jack polynomials and a Hilbert space interpretation of deformed Calogero–Moser–Sutherland operators,” Bulletin London Math. Soc. 51 no. 2, (Feb, 2019) 353–370, arXiv:1802.02016 [math.QA].
  38. A. N. Sergeev and A. P. Veselov, “Symmetric Lie superalgebras and deformed quantum Calogero–Moser problems,” Adv. Math. 304 (2017) 728–768, arXiv:1412.8768 [math.RT].
  39. H.-Y. Chen, T. Kimura, and N. Lee, “Quantum Integrable Systems from Supergroup Gauge Theories,” JHEP 09 (2020) 104, arXiv:2003.13514 [hep-th].
  40. N. Nekrasov, “BPS/CFT Correspondence III: Gauge Origami partition function and q⁢q𝑞𝑞qqitalic_q italic_q-characters,” Commun. Math. Phys. 358 (2017) 863–894, arXiv:1701.00189 [hep-th].
  41. N. Nekrasov, “BPS/CFT correspondence IV: sigma models and defects in gauge theory,” Lett. Math. Phys. 109 (2019) 579–622, arXiv:1711.11011 [hep-th].
  42. N. Nekrasov, “BPS/CFT correspondence: non-perturbative Dyson–Schwinger equations and q⁢q𝑞𝑞qqitalic_q italic_q-characters,” JHEP 1603 (2016) 181, arXiv:1512.05388 [hep-th].
  43. M. Olshanetsky and A. Perelomov, “Quantum integrable systems related to lie algebras,” Physics Reports 94 no. 6, (1983) 313–404.
  44. B. K. Berntson, E. Langmann, and J. Lenells, “Nonchiral intermediate long-wave equation and interedge effects in narrow quantum Hall systems,” Physical Review B 102 no. 15, (2020) 155308, arXiv:2001.04462 [math-ph].
  45. A. Kapustin and N. Saulina, “Chern-Simons-Rozansky-Witten topological field theory,” Nucl. Phys. B823 (2009) 403–427, arXiv:0904.1447 [hep-th].
  46. E. Witten, “Fivebranes and Knots,” Quantum Topology 3 (2011) 1–137, arXiv:1101.3216 [hep-th].
  47. V. Mikhaylov and E. Witten, “Branes And Supergroups,” Commun. Math. Phys. 340 no. 2, (2015) 699–832, arXiv:1410.1175 [hep-th].
  48. V. Mikhaylov, “Analytic Torsion, 3d Mirror Symmetry And Supergroup Chern-Simons Theories,” arXiv:1505.03130 [hep-th].
  49. T. Okazaki and D. J. Smith, “Matrix supergroup Chern-Simons models for vortex-antivortex systems,” JHEP 02 (2018) 119, arXiv:1712.01370 [hep-th].
  50. N. Aghaei, A. M. Gainutdinov, M. Pawelkiewicz, and V. Schomerus, “Combinatorial Quantisation of G⁢L⁢(1|1)𝐺𝐿conditional11GL(1|1)italic_G italic_L ( 1 | 1 ) Chern-Simons Theory I: The Torus,” arXiv:1811.09123 [hep-th].
  51. T. Kimura and Y. Sugimoto, “Topological Vertex/anti-Vertex and Supergroup Gauge Theory,” JHEP 04 (2020) 081, arXiv:2001.05735 [hep-th].
  52. T. Kimura and F. Nieri, “Intersecting defects and supergroup gauge theory,” J. Phys. A 54 no. 43, (2021) 435401, arXiv:2105.02776 [hep-th].
  53. T. Kimura and Y. Shao, “Orthosymplectic superinstanton counting and brane dynamics,” Lett. Math. Phys. 113 no. 6, (2023) 122, arXiv:2306.08156 [hep-th].
  54. Springer, 7, 2021. arXiv:2012.11711 [hep-th].
  55. N. Nekrasov and N. S. Prabhakar, “Spiked Instantons from Intersecting D-branes,” Nucl. Phys. B914 (2017) 257–300, arXiv:1611.03478 [hep-th].
  56. N. Nekrasov, “BPS/CFT correspondence II: Instantons at crossroads, Moduli and Compactness Theorem,” Adv. Theor. Math. Phys. 21 (2017) 503–583, arXiv:1608.07272 [hep-th].
  57. A. Gorsky and N. Nekrasov, “Elliptic Calogero-Moser system from two-dimensional current algebra,” arXiv:hep-th/9401021 [hep-th].
  58. N. Nekrasov, “Holomorphic bundles and many body systems,” Commun. Math. Phys. 180 (1996) 587–604, arXiv:hep-th/9503157 [hep-th].
  59. E. D’Hoker and D. H. Phong, “Lectures on supersymmetric Yang–Mills theory and integrable systems,” in Theoretical Physics at the End of the Twentieth Century, CRM Series in Mathematical Physics, pp. 1–125. Springer, 2002. arXiv:hep-th/9912271 [hep-th].
  60. N. Nekrasov, “BPS/CFT correspondence V: BPZ and KZ equations from q⁢q𝑞𝑞qqitalic_q italic_q-characters,” arXiv:1711.11582 [hep-th].
  61. N. Nekrasov, V. Pestun, and S. Shatashvili, “Quantum geometry and quiver gauge theories,” Commun. Math. Phys. 357 (2018) 519–567, arXiv:1312.6689 [hep-th].
  62. H.-Y. Chen, T. J. Hollowood, and P. Zhao, “A 5d/3d duality from relativistic integrable system,” JHEP 07 (2012) 139, arXiv:1205.4230 [hep-th].
  63. A. V. Litvinov, “On spectrum of ILW hierarchy in conformal field theory,” JHEP 11 (2013) 155, arXiv:1307.8094 [hep-th].
  64. B. Feigin, M. Jimbo, T. Miwa, and E. Mukhin, “Quantum toroidal 𝔤⁢𝔩1𝔤subscript𝔩1\mathfrak{g}{{\mathfrak{l}}_{1}}fraktur_g fraktur_l start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and Bethe ansatz,” J. Phys. A 48 no. 24, (2015) 244001, arXiv:1502.07194 [math.QA].
  65. B. Feigin, M. Jimbo, T. Miwa, and E. Mukhin, “Finite Type Modules and Bethe Ansatz for Quantum Toroidal 𝔤⁢𝔩1𝔤subscript𝔩1{\mathfrak{gl}_{1}}fraktur_g fraktur_l start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT,” Commun. Math. Phys. 356 no. 1, (2017) 285–327, arXiv:1603.02765 [math.QA].
  66. T. Procházka and A. Watanabe, “On Bethe equations of 2d conformal field theory,” arXiv:2301.05147 [hep-th].
  67. Y. Cao and G. Zhao, “Quasimaps to quivers with potentials,” arXiv:2306.01302 [math.AG].
  68. T. Kimura and G. Noshita, “Gauge origami and quiver W-algebras,” arXiv:2310.08545 [hep-th].
  69. V. Knizhnik and A. Zamolodchikov, “Current algebra and Wess-Zumino model in two dimensions,” Nucl.Phys.B 247 (1984) 83–103.
  70. D. Gaiotto and M. Rapcak, “Miura operators, degenerate fields and the M2-M5 intersection,” JHEP 01 (2022) 086, arXiv:2012.04118 [hep-th].
  71. N. I. Stoilova and J. Van der Jeugt, “On classical Z2×Z2subscript𝑍2subscript𝑍2Z_{2}\times Z_{2}italic_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT × italic_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT-graded Lie algebras,” J. Math. Phys. 64 (2023) 061702, arXiv:2305.18604 [math-ph].
  72. N. I. Stoilova and J. Van der Jeugt, “Orthosymplectic ℤ2×ℤ2subscriptℤ2subscriptℤ2\mathbb{Z}_{2}\times\mathbb{Z}_{2}blackboard_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT × blackboard_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT-graded Lie superalgebras and parastatistics,” J. Phys. A 57 no. 9, (2024) 095202, arXiv:2402.11952 [math-ph].
  73. T. Kimura and N. Lee, “Defect in gauge theory and quantum Hall states,” Nucl. Phys. B 991 (2023) 116218, arXiv:2210.05949 [hep-th].
  74. N. Lee, “New dimer integrable systems and defects in five dimensional gauge theory,” arXiv:2312.13133 [hep-th].
  75. V. G. Kac, “Lie Superalgebras,” Adv. Math. 26 (1977) 8–96.
  76. T. Quella and V. Schomerus, “Superspace conformal field theory,” J. Phys. A46 (2013) 494010, arXiv:1307.7724 [hep-th].
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 tweets and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: