Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Addressing Heterogeneity in Federated Load Forecasting with Personalization Layers (2404.01517v1)

Published 1 Apr 2024 in cs.LG and eess.SP

Abstract: The advent of smart meters has enabled pervasive collection of energy consumption data for training short-term load forecasting models. In response to privacy concerns, federated learning (FL) has been proposed as a privacy-preserving approach for training, but the quality of trained models degrades as client data becomes heterogeneous. In this paper we propose the use of personalization layers for load forecasting in a general framework called PL-FL. We show that PL-FL outperforms FL and purely local training, while requiring lower communication bandwidth than FL. This is done through extensive simulations on three different datasets from the NREL ComStock repository.

Citations (2)

Summary

We haven't generated a summary for this paper yet.