Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Federated Short-Term Load Forecasting with Personalization Layers for Heterogeneous Clients (2309.13194v1)

Published 22 Sep 2023 in cs.LG

Abstract: The advent of smart meters has enabled pervasive collection of energy consumption data for training short-term load forecasting (STLF) models. In response to privacy concerns, federated learning (FL) has been proposed as a privacy-preserving approach for training, but the quality of trained models degrades as client data becomes heterogeneous. In this paper we alleviate this drawback using personalization layers, wherein certain layers of an STLF model in an FL framework are trained exclusively on the clients' own data. To that end, we propose a personalized FL algorithm (PL-FL) enabling FL to handle personalization layers. The PL-FL algorithm is implemented by using the Argonne Privacy-Preserving Federated Learning package. We test the forecast performance of models trained on the NREL ComStock dataset, which contains heterogeneous energy consumption data of multiple commercial buildings. Superior performance of models trained with PL-FL demonstrates that personalization layers enable classical FL algorithms to handle clients with heterogeneous data.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (40)
  1. M. Espinoza, J. A. Suykens, R. Belmans, and B. De Moor, “Electric load forecasting,” IEEE Control Systems Magazine, vol. 27, no. 5, pp. 43–57, 2007.
  2. B. Wang, Y. Li, and J. Watada, “Supply reliability and generation cost analysis due to load forecast uncertainty in unit commitment problems,” IEEE Transactions on Power Systems, vol. 28, no. 3, pp. 2242–2252, 2013.
  3. G. Gross and F. Galiana, “Short-term load forecasting,” Proceedings of the IEEE, vol. 75, no. 12, pp. 1558–1573, 1987.
  4. H. Willis and J. Northcote-Green, “Spatial electric load forecasting: A tutorial review,” Proceedings of the IEEE, vol. 71, no. 2, pp. 232–253, 1983.
  5. X. Yu, C. Cecati, T. Dillon, and M. G. Simões, “The new frontier of smart grids,” IEEE Industrial Electronics Magazine, vol. 5, no. 3, pp. 49–63, 2011.
  6. Y. Kabalci, “A survey on smart metering and smart grid communication,” Renewable and Sustainable Energy Reviews, vol. 57, pp. 302–318, 2016. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1364032115014975
  7. W. Kong, Z. Y. Dong, Y. Jia, D. J. Hill, Y. Xu, and Y. Zhang, “Short-term residential load forecasting based on LSTM recurrent neural network,” IEEE Transactions on Smart Grid, vol. 10, no. 1, pp. 841–851, 2019.
  8. T. Hong, J. Xie, and J. Black, “Global energy forecasting competition 2017: Hierarchical probabilistic load forecasting,” International Journal of Forecasting, vol. 35, no. 4, pp. 1389–1399, 2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S016920701930024X
  9. A. Tarsitano and I. L. Amerise, “Short-term load forecasting using a two-stage sarimax model,” Energy, vol. 133, pp. 108–114, 2017. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0360544217308848
  10. A. Molina-Markham, P. Shenoy, K. Fu, E. Cecchet, and D. Irwin, “Private memoirs of a smart meter,” in Proceedings of the 2nd ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Building, ser. BuildSys ’10.   New York, NY, USA: Association for Computing Machinery, 2010, pp. 61–66. [Online]. Available: https://doi.org/10.1145/1878431.1878446
  11. C. Beckel, L. Sadamori, T. Staake, and S. Santini, “Revealing household characteristics from smart meter data,” Energy, vol. 78, pp. 397–410, 2014. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0360544214011748
  12. D. Lee and D. J. Hess, “Data privacy and residential smart meters: Comparative analysis and harmonization potential,” Utilities Policy, vol. 70, p. 101188, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0957178721000229
  13. K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan, S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure aggregation for privacy-preserving machine learning,” in Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, ser. CCS ’17.   New York, NY, USA: Association for Computing Machinery, 2017, pp. 1175–1191. [Online]. Available: https://doi.org/10.1145/3133956.3133982
  14. T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning: Challenges, methods, and future directions,” IEEE Signal Processing Magazine, vol. 37, no. 3, pp. 50–60, 2020.
  15. M. G. Arivazhagan, V. Aggarwal, A. K. Singh, and S. Choudhary, “Federated learning with personalization layers,” 2019.
  16. L. Collins, H. Hassani, A. Mokhtari, and S. Shakkottai, “Exploiting shared representations for personalized federated learning,” in Proceedings of the 38th International Conference on Machine Learning, ser. Proceedings of Machine Learning Research, M. Meila and T. Zhang, Eds., vol. 139.   PMLR, 18–24 July 2021, pp. 2089–2099. [Online]. Available: https://proceedings.mlr.press/v139/collins21a.html
  17. X. Ma, J. Zhang, S. Guo, and W. Xu, “Layer-wised model aggregation for personalized federated learning,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2022, pp. 10 092–10 101.
  18. S.-T. Chen, D. Yu, and A. Moghaddamjo, “Weather sensitive short-term load forecasting using nonfully connected artificial neural network,” IEEE Transactions on Power Systems, vol. 7, no. 3, pp. 1098–1105, 1992.
  19. M. Voß, C. Bender-Saebelkampf, and S. Albayrak, “Residential short-term load forecasting using convolutional neural networks,” in 2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), 2018, pp. 1–6.
  20. K. Chen, K. Chen, Q. Wang, Z. He, J. Hu, and J. He, “Short-term load forecasting with deep residual networks,” IEEE Transactions on Smart Grid, vol. 10, no. 4, pp. 3943–3952, 2019.
  21. S. Jung, J. Moon, S. Park, and E. Hwang, “An attention-based multilayer GRU model for multistep-ahead short-term load forecasting,” Sensors, vol. 21, no. 5, p. 1639, 2021.
  22. M. Xia, H. Shao, X. Ma, and C. W. de Silva, “A stacked GRU-RNN-based approach for predicting renewable energy and electricity load for smart grid operation,” IEEE Transactions on Industrial Informatics, vol. 17, no. 10, pp. 7050–7059, 2021.
  23. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in Neural Information Processing Systems, vol. 30, 2017.
  24. J. Lin, J. Ma, J. Zhu, and Y. Cui, “Short-term load forecasting based on LSTM networks considering attention mechanism,” International Journal of Electrical Power & Energy Systems, vol. 137, p. 107818, 2022.
  25. A. Taïk and S. Cherkaoui, “Electrical load forecasting using edge computing and federated learning,” in ICC 2020–2020 IEEE International Conference on Communications (ICC), 2020, pp. 1–6.
  26. M. N. Fekri, K. Grolinger, and S. Mir, “Distributed load forecasting using smart meter data: Federated learning with recurrent neural networks,” International Journal of Electrical Power & Energy Systems, vol. 137, p. 107669, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0142061521008991
  27. J. D. Fernández, S. P. Menci, C. M. Lee, A. Rieger, and G. Fridgen, “Privacy-preserving federated learning for residential short-term load forecasting,” Applied Energy, vol. 326, p. 119915, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0306261922011722
  28. C. Dwork and A. Roth, “The algorithmic foundations of differential privacy,” Foundations and Trends® in Theoretical Computer Science, vol. 9, no. 3–4, pp. 211–407, 2014. [Online]. Available: http://dx.doi.org/10.1561/0400000042
  29. Z. Chen, J. Li, L. Cheng, and X. Liu, “Federated-WDCGAN: A federated smart meter data sharing framework for privacy preservation,” Applied Energy, vol. 334, p. 120711, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0306261923000752
  30. M. A. Husnoo, A. Anwar, N. Hosseinzadeh, S. N. Islam, A. N. Mahmood, and R. Doss, “A secure federated learning framework for residential short term load forecasting,” IEEE Transactions on Smart Grid, pp. 1–1, 2023.
  31. Z. Su, Y. Wang, T. H. Luan, N. Zhang, F. Li, T. Chen, and H. Cao, “Secure and efficient federated learning for smart grid with edge-cloud collaboration,” IEEE Transactions on Industrial Informatics, vol. 18, no. 2, pp. 1333–1344, 2022.
  32. Y. Wang, N. Gao, and G. Hug, “Personalized federated learning for individual consumer load forecasting,” CSEE Journal of Power and Energy Systems, vol. 9, no. 1, pp. 326–330, 2023.
  33. M. Grabner, Y. Wang, Q. Wen, B. Blaz̆ic̆, and V. S̆truc, “A global modeling framework for load forecasting in distribution networks,” IEEE Transactions on Smart Grid, pp. 1–1, 2023.
  34. D. Qin, C. Wang, Q. Wen, W. Chen, L. Sun, and Y. Wang, “Personalized federated DARTS for electricity load forecasting of Individual buildings,” IEEE Transactions on Smart Grid, pp. 1–1, 2023.
  35. A. Parker, H. Horsey, M. Dahlhausen, M. Praprost, C. CaraDonna, A. LeBar, and L. Klun, “ComStock reference documentation: Version 1,” National Renewable Energy Lab.(NREL), Golden, CO (United States), Tech. Rep., 2023.
  36. M. Ryu, Y. Kim, K. Kim, and R. K. Madduri, “APPFL: Open-source software framework for privacy-preserving federated learning,” in 2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), 2022, pp. 1074–1083.
  37. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.
  38. D. Chai, L. Wang, L. Yang, J. Zhang, K. Chen, and Q. Yang, “FedEval: A holistic evaluation framework for federated learning,” 2022.
  39. K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V. Ivanov, C. Kiddon, J. Konečnỳ, S. Mazzocchi, B. McMahan et al., “Towards federated learning at scale: System design,” Proceedings of Machine Learning and Systems, vol. 1, pp. 374–388, 2019.
  40. R. J. Hyndman and A. B. Koehler, “Another look at measures of forecast accuracy,” International Journal of Forecasting, vol. 22, no. 4, pp. 679–688, 2006. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0169207006000239
Citations (3)

Summary

We haven't generated a summary for this paper yet.