Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 10 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

SMEFT Matching to $Z^\prime$ Models at Dimension-8 (2404.01375v3)

Published 1 Apr 2024 in hep-ph

Abstract: Heavy neutral gauge bosons arise in many motivated models of Beyond the Standard Model Physics. Experimental searches require that such gauge bosons are above the TeV scale in most models which means that the tools of effective field theories, in particular the Standard Model Effective Field Theory (SMEFT), are useful. We match the SMEFT to models with heavy $Z\prime$ bosons, including effects of dimension-8 operators, and consider the restrictions on model parameters from electroweak precision measurements and from Drell Yan invariant mass distributions and forward-backward asymmetry, $A_\text{FB}$, measurements at the LHC. The results demonstrate the model dependence of the resulting limits on SMEFT coefficients and the relatively small impact of including dimension-8 matching. In all cases, the limits from invariant mass distributions are stronger than from $A_\text{FB}$ measurements in the $Z\prime$ models we consider.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (114)
  1. W. Buchmuller and D. Wyler, “Effective Lagrangian Analysis of New Interactions and Flavor Conservation,” Nucl. Phys. B 268 (1986) 621–653.
  2. S. Weinberg, “Baryon and Lepton Nonconserving Processes,” Phys. Rev. Lett. 43 (1979) 1566–1570.
  3. T. Ma, J. Shu, and M.-L. Xiao, “Standard model effective field theory from on-shell amplitudes*,” Chin. Phys. C 47 no. 2, (2023) 023105, arXiv:1902.06752 [hep-ph].
  4. R. Aoude and C. S. Machado, “The Rise of SMEFT On-shell Amplitudes,” JHEP 12 (2019) 058, arXiv:1905.11433 [hep-ph].
  5. L. Lehman, “Extending the Standard Model Effective Field Theory with the Complete Set of Dimension-7 Operators,” Phys. Rev. D 90 no. 12, (2014) 125023, arXiv:1410.4193 [hep-ph].
  6. Y. Liao and X.-D. Ma, “Renormalization Group Evolution of Dimension-seven Baryon- and Lepton-number-violating Operators,” JHEP 11 (2016) 043, arXiv:1607.07309 [hep-ph].
  7. C. W. Murphy, “Dimension-8 operators in the Standard Model Eective Field Theory,” JHEP 10 (2020) 174, arXiv:2005.00059 [hep-ph].
  8. H.-L. Li, Z. Ren, J. Shu, M.-L. Xiao, J.-H. Yu, and Y.-H. Zheng, “Complete set of dimension-eight operators in the standard model effective field theory,” Phys. Rev. D 104 no. 1, (2021) 015026, arXiv:2005.00008 [hep-ph].
  9. M. Accettulli Huber and S. De Angelis, “Standard Model EFTs via on-shell methods,” JHEP 11 (2021) 221, arXiv:2108.03669 [hep-th].
  10. G. Durieux, T. Kitahara, Y. Shadmi, and Y. Weiss, “The electroweak effective field theory from on-shell amplitudes,” JHEP 01 (2020) 119, arXiv:1909.10551 [hep-ph].
  11. R. V. Harlander, T. Kempkens, and M. C. Schaaf, “Standard model effective field theory up to mass dimension 12,” Phys. Rev. D 108 no. 5, (2023) 055020, arXiv:2305.06832 [hep-ph].
  12. B. Henning, X. Lu, T. Melia, and H. Murayama, “2, 84, 30, 993, 560, 15456, 11962, 261485, …: Higher dimension operators in the SM EFT,” JHEP 08 (2017) 016, arXiv:1512.03433 [hep-ph]. [Erratum: JHEP 09, 019 (2019)].
  13. B. Henning, X. Lu, T. Melia, and H. Murayama, “Operator bases, S𝑆Sitalic_S-matrices, and their partition functions,” JHEP 10 (2017) 199, arXiv:1706.08520 [hep-th].
  14. R. M. Fonseca, “Enumerating the operators of an effective field theory,” Phys. Rev. D 101 no. 3, (2020) 035040, arXiv:1907.12584 [hep-ph].
  15. J. C. Criado, “BasisGen: automatic generation of operator bases,” Eur. Phys. J. C 79 no. 3, (2019) 256, arXiv:1901.03501 [hep-ph].
  16. C. Hays, A. Martin, V. Sanz, and J. Setford, “On the impact of dimension-eight SMEFT operators on Higgs measurements,” JHEP 02 (2019) 123, arXiv:1808.00442 [hep-ph].
  17. C. Degrande and H.-L. Li, “Impact of dimension-8 SMEFT operators on diboson productions,” JHEP 06 (2023) 149, arXiv:2303.10493 [hep-ph].
  18. R. Boughezal, E. Mereghetti, and F. Petriello, “Dilepton production in the SMEFT at 𝒪⁢(1/Λ4)𝒪1superscriptΛ4\mathcal{O}(1/\Lambda^{4})caligraphic_O ( 1 / roman_Λ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT ),” Phys. Rev. D 104 no. 9, (2021) 095022, arXiv:2106.05337 [hep-ph].
  19. R. Boughezal, Y. Huang, and F. Petriello, “Exploring the SMEFT at dimension eight with Drell-Yan transverse momentum measurements,” Phys. Rev. D 106 no. 3, (2022) 036020, arXiv:2207.01703 [hep-ph].
  20. T. Corbett, J. Desai, O. J. P. Éboli, M. C. Gonzalez-Garcia, M. Martines, and P. Reimitz, “Impact of dimension-eight SMEFT operators in the electroweak precision observables and triple gauge couplings analysis in universal SMEFT,” Phys. Rev. D 107 no. 11, (2023) 115013, arXiv:2304.03305 [hep-ph].
  21. I. Brivio and M. Trott, “The Standard Model as an Effective Field Theory,” Phys. Rept. 793 (2019) 1–98, arXiv:1706.08945 [hep-ph].
  22. G. Isidori, F. Wilsch, and D. Wyler, “The standard model effective field theory at work,” Rev. Mod. Phys. 96 no. 1, (2024) 015006, arXiv:2303.16922 [hep-ph].
  23. S. Dawson, S. Homiller, and S. D. Lane, “Putting standard model EFT fits to work,” Phys. Rev. D 102 no. 5, (2020) 055012, arXiv:2007.01296 [hep-ph].
  24. M. Gorbahn, J. M. No, and V. Sanz, “Benchmarks for Higgs Effective Theory: Extended Higgs Sectors,” JHEP 10 (2015) 036, arXiv:1502.07352 [hep-ph].
  25. J. Fuentes-Martin, M. König, J. Pagès, A. E. Thomsen, and F. Wilsch, “SuperTracer: A Calculator of Functional Supertraces for One-Loop EFT Matching,” JHEP 04 (2021) 281, arXiv:2012.08506 [hep-ph].
  26. A. Carmona, A. Lazopoulos, P. Olgoso, and J. Santiago, “Matchmakereft: automated tree-level and one-loop matching,” SciPost Phys. 12 no. 6, (2022) 198, arXiv:2112.10787 [hep-ph].
  27. S. Das Bakshi, J. Chakrabortty, and S. K. Patra, “CoDEx: Wilson coefficient calculator connecting SMEFT to UV theory,” Eur. Phys. J. C 79 no. 1, (2019) 21, arXiv:1808.04403 [hep-ph].
  28. J. C. Criado, “MatchingTools: a Python library for symbolic effective field theory calculations,” Comput. Phys. Commun. 227 (2018) 42–50, arXiv:1710.06445 [hep-ph].
  29. S. Dawson, D. Fontes, S. Homiller, and M. Sullivan, “Role of dimension-eight operators in an EFT for the 2HDM,” Phys. Rev. D 106 no. 5, (2022) 055012, arXiv:2205.01561 [hep-ph].
  30. U. Banerjee, J. Chakrabortty, C. Englert, S. U. Rahaman, and M. Spannowsky, “Integrating out heavy scalars with modified equations of motion: Matching computation of dimension-eight SMEFT coefficients,” Phys. Rev. D 107 no. 5, (2023) 055007, arXiv:2210.14761 [hep-ph].
  31. J. Ellis, K. Mimasu, and F. Zampedri, “Dimension-8 SMEFT analysis of minimal scalar field extensions of the Standard Model,” JHEP 10 (2023) 051, arXiv:2304.06663 [hep-ph].
  32. S. Dawson, S. Homiller, and M. Sullivan, “Impact of dimension-eight SMEFT contributions: A case study,” Phys. Rev. D 104 no. 11, (2021) 115013, arXiv:2110.06929 [hep-ph].
  33. T. Corbett, A. Helset, A. Martin, and M. Trott, “EWPD in the SMEFT to dimension eight,” JHEP 06 (2021) 076, arXiv:2102.02819 [hep-ph].
  34. P. Langacker, R. W. Robinett, and J. L. Rosner, “New Heavy Gauge Bosons in p p and p anti-p Collisions,” Phys. Rev. D 30 (1984) 1470.
  35. P. Langacker, “The Physics of Heavy Z′superscript𝑍′Z^{\prime}italic_Z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT Gauge Bosons,” Rev. Mod. Phys. 81 (2009) 1199–1228, arXiv:0801.1345 [hep-ph].
  36. V. Barger, P. Langacker, and H.-S. Lee, “Primordial nucleosynthesis constraints on Z′superscript𝑍′Z^{\prime}italic_Z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT properties,” Phys. Rev. D 67 (2003) 075009, arXiv:hep-ph/0302066.
  37. K. S. Babu, X.-G. He, and E. Ma, “New Supersymmetric Left-Right Gauge Model: Higgs Boson Structure and Neutral Current Analysis,” Phys. Rev. D 36 (1987) 878.
  38. E. Witten, “New Issues in Manifolds of SU(3) Holonomy,” Nucl. Phys. B 268 (1986) 79.
  39. J. L. Hewett and T. G. Rizzo, “Low-Energy Phenomenology of Superstring Inspired E(6) Models,” Phys. Rept. 183 (1989) 193.
  40. R. W. Robinett and J. L. Rosner, “Mass Scales in Grand Unified Theories,” Phys. Rev. D 26 (1982) 2396.
  41. I. Antoniadis, “A Possible new dimension at a few TeV,” Phys. Lett. B 246 (1990) 377–384.
  42. T. Appelquist, H.-C. Cheng, and B. A. Dobrescu, “Bounds on universal extra dimensions,” Phys. Rev. D 64 (2001) 035002, arXiv:hep-ph/0012100.
  43. R. Barbieri, A. Pomarol, R. Rattazzi, and A. Strumia, “Electroweak symmetry breaking after LEP-1 and LEP-2,” Nucl. Phys. B 703 (2004) 127–146, arXiv:hep-ph/0405040.
  44. I. Gogoladze and C. Macesanu, “Precision electroweak constraints on Universal Extra Dimensions revisited,” Phys. Rev. D 74 (2006) 093012, arXiv:hep-ph/0605207.
  45. M. Perelstein, “Little Higgs models and their phenomenology,” Prog. Part. Nucl. Phys. 58 (2007) 247–291, arXiv:hep-ph/0512128.
  46. R. S. Chivukula, H.-J. He, J. Howard, and E. H. Simmons, “The Structure of electroweak corrections due to extended gauge symmetries,” Phys. Rev. D 69 (2004) 015009, arXiv:hep-ph/0307209.
  47. C. T. Hill and E. H. Simmons, “Strong Dynamics and Electroweak Symmetry Breaking,” Phys. Rept. 381 (2003) 235–402, arXiv:hep-ph/0203079. [Erratum: Phys.Rept. 390, 553–554 (2004)].
  48. K. Agashe, H. Davoudiasl, S. Gopalakrishna, T. Han, G.-Y. Huang, G. Perez, Z.-G. Si, and A. Soni, “LHC Signals for Warped Electroweak Neutral Gauge Bosons,” Phys. Rev. D 76 (2007) 115015, arXiv:0709.0007 [hep-ph].
  49. M. Carena, A. Delgado, E. Ponton, T. M. P. Tait, and C. E. M. Wagner, “Precision electroweak data and unification of couplings in warped extra dimensions,” Phys. Rev. D 68 (2003) 035010, arXiv:hep-ph/0305188.
  50. E. Accomando, A. Belyaev, L. Fedeli, S. F. King, and C. Shepherd-Themistocleous, “Z’ physics with early LHC data,” Phys. Rev. D 83 (2011) 075012, arXiv:1010.6058 [hep-ph].
  51. 3, 1995. arXiv:hep-ph/9504216.
  52. T. G. Rizzo, “Z′superscript𝑍′Z^{\prime}italic_Z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT phenomenology and the LHC,” in Theoretical Advanced Study Institute in Elementary Particle Physics: Exploring New Frontiers Using Colliders and Neutrinos, pp. 537–575. 10, 2006. arXiv:hep-ph/0610104.
  53. A. V. Gulov, A. A. Pankov, A. O. Pevzner, and V. V. Skalozub, “Model-independent constraints on the Abelian Z′superscript𝑍′Z^{\prime}italic_Z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT couplings within the ATLAS data on the dilepton production processes at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV,” Nonlin. Phenom. Complex Syst. 21 no. 1, (2018) 21–29, arXiv:1803.07532 [hep-ph].
  54. E. Salvioni, G. Villadoro, and F. Zwirner, “Minimal Z-prime models: Present bounds and early LHC reach,” JHEP 11 (2009) 068, arXiv:0909.1320 [hep-ph].
  55. M. S. Chanowitz, “A Heavy little Higgs and a light Z’ under the radar,” Phys. Rev. D 84 (2011) 035014, arXiv:1102.3672 [hep-ph].
  56. E. Accomando, D. Becciolini, A. Belyaev, S. Moretti, and C. Shepherd-Themistocleous, “Z’ at the LHC: Interference and Finite Width Effects in Drell-Yan,” JHEP 10 (2013) 153, arXiv:1304.6700 [hep-ph].
  57. D. Pappadopulo, A. Thamm, R. Torre, and A. Wulzer, “Heavy Vector Triplets: Bridging Theory and Data,” JHEP 09 (2014) 060, arXiv:1402.4431 [hep-ph].
  58. M. J. Baker, T. Martonhelyi, A. Thamm, and R. Torre, “The role of vector boson fusion in the production of heavy vector triplets at the LHC and HL-LHC,” JHEP 11 (2022) 066, arXiv:2207.05091 [hep-ph].
  59. ATLAS Collaboration, G. Aad et al., “Search for high-mass dilepton resonances using 139 fb−11{}^{-1}start_FLOATSUPERSCRIPT - 1 end_FLOATSUPERSCRIPT of p⁢p𝑝𝑝ppitalic_p italic_p collision data collected at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG =13 TeV with the ATLAS detector,” Phys. Lett. B 796 (2019) 68–87, arXiv:1903.06248 [hep-ex].
  60. CMS Collaboration, A. M. Sirunyan et al., “Search for resonant and nonresonant new phenomena in high-mass dilepton final states at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV,” JHEP 07 (2021) 208, arXiv:2103.02708 [hep-ex].
  61. K. Korshynska, M. Löschner, M. Marinichenko, K. Mękała, and J. Reuter, “Z’ boson mass reach and model discrimination at muon colliders,” arXiv:2402.18460 [hep-ph].
  62. E. C. G. Stueckelberg, “Interaction forces in electrodynamics and in the field theory of nuclear forces,” Helv. Phys. Acta 11 (1938) 299–328.
  63. E. C. G. Stueckelberg, “Interaction energy in electrodynamics and in the field theory of nuclear forces,” Helv. Phys. Acta 11 (1938) 225–244.
  64. J. Erler, “Considerations Concerning the Little Group,” Universe 9 no. 9, (2023) 420, arXiv:2303.04568 [hep-th].
  65. H. Ruegg and M. Ruiz-Altaba, “The Stueckelberg field,” Int. J. Mod. Phys. A 19 (2004) 3265–3348, arXiv:hep-th/0304245.
  66. M. Schmgrojltz and C. Spethmann, “Two Simple W’ Models for the Early LHC,” JHEP 07 (2011) 046, arXiv:1011.5918 [hep-ph].
  67. C. Grojean, E. Salvioni, and R. Torre, “A weakly constrained W’ at the early LHC,” JHEP 07 (2011) 002, arXiv:1103.2761 [hep-ph].
  68. R. Torre, “Limits on Leptophobic W′superscript𝑊′W^{\prime}italic_W start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT after 1 fb−11{}^{-1}start_FLOATSUPERSCRIPT - 1 end_FLOATSUPERSCRIPT of LHC Data: A Lesson on parton Level Simulations,” arXiv:1109.0890 [hep-ph].
  69. V. D. Barger, W.-Y. Keung, and E. Ma, “A Gauge Model With Light W𝑊Witalic_W and Z𝑍Zitalic_Z Bosons,” Phys. Rev. D 22 (1980) 727.
  70. G. C. Branco, P. M. Ferreira, L. Lavoura, M. N. Rebelo, M. Sher, and J. P. Silva, “Theory and phenomenology of two-Higgs-doublet models,” Phys. Rept. 516 (2012) 1–102, arXiv:1106.0034 [hep-ph].
  71. J.-h. Kang, P. Langacker, and T.-j. Li, “Neutrino masses in supersymmetric SU(3)(C) x SU(2)(L) x U(1)(Y) x U(1)-prime models,” Phys. Rev. D 71 (2005) 015012, arXiv:hep-ph/0411404.
  72. S. F. King, S. Moretti, and R. Nevzorov, “Theory and phenomenology of an exceptional supersymmetric standard model,” Phys. Rev. D 73 (2006) 035009, arXiv:hep-ph/0510419.
  73. E. Ma, “Neutrino masses in an extended gauge model with E(6) particle content,” Phys. Lett. B 380 (1996) 286–290, arXiv:hep-ph/9507348.
  74. E. Ma, “Particle Dichotomy and Left-Right Decomposition of E(6) Superstring Models,” Phys. Rev. D 36 (1987) 274.
  75. J. Erler, P. Langacker, and T.-j. Li, “The Z𝑍Zitalic_Z - Z′superscript𝑍′Z^{\prime}italic_Z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT mass hierarchy in a supersymmetric model with a secluded U(1) -prime breaking sector,” Phys. Rev. D 66 (2002) 015002, arXiv:hep-ph/0205001.
  76. T. Appelquist and H.-U. Yee, “Universal extra dimensions and the Higgs boson mass,” Phys. Rev. D 67 (2003) 055002, arXiv:hep-ph/0211023.
  77. R. Casalbuoni, S. De Curtis, D. Dominici, and R. Gatto, “SM Kaluza-Klein excitations and electroweak precision tests,” Phys. Lett. B 462 (1999) 48–54, arXiv:hep-ph/9907355.
  78. H.-C. Cheng, K. T. Matchev, and M. Schmaltz, “Bosonic supersymmetry? Getting fooled at the CERN LHC,” Phys. Rev. D 66 (2002) 056006, arXiv:hep-ph/0205314.
  79. K.-m. Cheung and G. L. Landsberg, “Kaluza-Klein States of the Standard Model Gauge Bosons: Constraints from High Energy Experiments,” Phys. Rev. D 65 (2002) 076003, arXiv:hep-ph/0110346.
  80. A. Delgado, A. Pomarol, and M. Quiros, “Electroweak and flavor physics in extensions of the standard model with large extra dimensions,” JHEP 01 (2000) 030, arXiv:hep-ph/9911252.
  81. M. Masip and A. Pomarol, “Effects of SM Kaluza-Klein excitations on electroweak observables,” Phys. Rev. D 60 (1999) 096005, arXiv:hep-ph/9902467.
  82. H. Davoudiasl and T. G. Rizzo, “Signatures of Spherical Compactification at the LHC,” Phys. Rev. D 76 (2007) 055009, arXiv:hep-ph/0702078.
  83. B. Henning, X. Lu, and H. Murayama, “How to use the Standard Model effective field theory,” JHEP 01 (2016) 023, arXiv:1412.1837 [hep-ph].
  84. C. Hays, A. Helset, A. Martin, and M. Trott, “Exact SMEFT formulation and expansion to 𝒪⁢(v4/Λ4)𝒪superscript𝑣4superscriptΛ4\mathcal{O}(v^{4}/\Lambda^{4})caligraphic_O ( italic_v start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT / roman_Λ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT ),” JHEP 11 (2020) 087, arXiv:2007.00565 [hep-ph].
  85. J. Brehmer, A. Freitas, D. Lopez-Val, and T. Plehn, “Pushing Higgs Effective Theory to its Limits,” Phys. Rev. D 93 no. 7, (2016) 075014, arXiv:1510.03443 [hep-ph].
  86. B. Grzadkowski, M. Iskrzynski, M. Misiak, and J. Rosiek, “Dimension-Six Terms in the Standard Model Lagrangian,” JHEP 10 (2010) 085, arXiv:1008.4884 [hep-ph].
  87. A. Dedes, W. Materkowska, M. Paraskevas, J. Rosiek, and K. Suxho, “Feynman rules for the Standard Model Effective Field Theory in Rξ𝜉{}_{\xi}start_FLOATSUBSCRIPT italic_ξ end_FLOATSUBSCRIPT -gauges,” JHEP 06 (2017) 143, arXiv:1704.03888 [hep-ph].
  88. S. Dawson and P. P. Giardino, “Flavorful electroweak precision observables in the Standard Model effective field theory,” Phys. Rev. D 105 no. 7, (2022) 073006, arXiv:2201.09887 [hep-ph].
  89. L. Bellafronte, S. Dawson, and P. P. Giardino, “The importance of flavor in SMEFT Electroweak Precision Fits,” JHEP 05 (2023) 208, arXiv:2304.00029 [hep-ph].
  90. J. de Blas, M. Chala, and J. Santiago, “Global Constraints on Lepton-Quark Contact Interactions,” Phys. Rev. D 88 (2013) 095011, arXiv:1307.5068 [hep-ph].
  91. S. Dawson and P. P. Giardino, “New physics through Drell-Yan standard model EFT measurements at NLO,” Phys. Rev. D 104 no. 7, (2021) 073004, arXiv:2105.05852 [hep-ph].
  92. L. Allwicher, D. A. Faroughy, F. Jaffredo, O. Sumensari, and F. Wilsch, “Drell-Yan tails beyond the Standard Model,” JHEP 03 (2023) 064, arXiv:2207.10714 [hep-ph].
  93. L. Allwicher, D. A. Faroughy, F. Jaffredo, O. Sumensari, and F. Wilsch, “HighPT: A tool for  high-pTsubscript𝑝𝑇p_{T}italic_p start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT Drell-Yan tails beyond the standard model,” Comput. Phys. Commun. 289 (2023) 108749, arXiv:2207.10756 [hep-ph].
  94. M. Farina, G. Panico, D. Pappadopulo, J. T. Ruderman, R. Torre, and A. Wulzer, “Energy helps accuracy: electroweak precision tests at hadron colliders,” Phys. Lett. B 772 (2017) 210–215, arXiv:1609.08157 [hep-ph].
  95. G. Panico, L. Ricci, and A. Wulzer, “High-energy EFT probes with fully differential Drell-Yan measurements,” JHEP 07 (2021) 086, arXiv:2103.10532 [hep-ph].
  96. R. Torre, L. Ricci, and A. Wulzer, “On the W&Y interpretation of high-energy Drell-Yan measurements,” JHEP 02 (2021) 144, arXiv:2008.12978 [hep-ph].
  97. ATLAS Collaboration, G. Aad et al., “Measurement of the double-differential high-mass Drell-Yan cross section in pp collisions at s=8𝑠8\sqrt{s}=8square-root start_ARG italic_s end_ARG = 8 TeV with the ATLAS detector,” JHEP 08 (2016) 009, arXiv:1606.01736 [hep-ex].
  98. CMS Collaboration, V. Khachatryan et al., “Forward–backward asymmetry of Drell–Yan lepton pairs in pp collisions at s=8𝑠8\sqrt{s}=8square-root start_ARG italic_s end_ARG = 8 TeVTeV\,\mathrm{TeV}roman_TeV,” Eur. Phys. J. C 76 no. 6, (2016) 325, arXiv:1601.04768 [hep-ex].
  99. CMS Collaboration, A. Tumasyan et al., “Measurement of the Drell-Yan forward-backward asymmetry at high dilepton masses in proton-proton collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV,” JHEP 2022 no. 08, (2022) 063, arXiv:2202.12327 [hep-ex].
  100. R. Boughezal, Y. Huang, and F. Petriello, “Impact of high invariant-mass Drell-Yan forward-backward asymmetry measurements on SMEFT fits,” Phys. Rev. D 108 no. 7, (2023) 076008, arXiv:2303.08257 [hep-ph].
  101. J. Campbell and T. Neumann, “Precision Phenomenology with MCFM,” JHEP 12 (2019) 034, arXiv:1909.09117 [hep-ph].
  102. NNPDF Collaboration, R. D. Ball et al., “Parton distributions from high-precision collider data,” Eur. Phys. J. C 77 no. 10, (2017) 663, arXiv:1706.00428 [hep-ph].
  103. J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H. S. Shao, T. Stelzer, P. Torrielli, and M. Zaro, “The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations,” JHEP 07 (2014) 079, arXiv:1405.0301 [hep-ph].
  104. I. Brivio, “SMEFTsim 3.0 — a practical guide,” JHEP 04 (2021) 073, arXiv:2012.11343 [hep-ph].
  105. A. Dedes, J. Rosiek, M. Ryczkowski, K. Suxho, and L. Trifyllis, “SmeftFR v3 – Feynman rules generator for the Standard Model Effective Field Theory,” Comput. Phys. Commun. 294 (2024) 108943, arXiv:2302.01353 [hep-ph].
  106. R. Bartocci, A. Biekötter, and T. Hurth, “A global analysis of the SMEFT under the minimal MFV assumption,” arXiv:2311.04963 [hep-ph].
  107. J. Ellis, C. W. Murphy, V. Sanz, and T. You, “Updated Global SMEFT Fit to Higgs, Diboson and Electroweak Data,” JHEP 06 (2018) 146, arXiv:1803.03252 [hep-ph].
  108. C. Grojean, M. Montull, and M. Riembau, “Diboson at the LHC vs LEP,” JHEP 03 (2019) 020, arXiv:1810.05149 [hep-ph].
  109. E. da Silva Almeida, A. Alves, N. Rosa Agostinho, O. J. P. Éboli, and M. C. Gonzalez-Garcia, “Electroweak Sector Under Scrutiny: A Combined Analysis of LHC and Electroweak Precision Data,” Phys. Rev. D 99 no. 3, (2019) 033001, arXiv:1812.01009 [hep-ph].
  110. A. Biekötter, T. Corbett, and T. Plehn, “The Gauge-Higgs Legacy of the LHC Run II,” SciPost Phys. 6 no. 6, (2019) 064, arXiv:1812.07587 [hep-ph].
  111. F. del Aguila and J. de Blas, “Electroweak constraints on new physics,” Fortsch. Phys. 59 (2011) 1036–1040, arXiv:1105.6103 [hep-ph].
  112. J. ter Hoeve, G. Magni, J. Rojo, A. N. Rossia, and E. Vryonidou, “The automation of SMEFT-assisted constraints on UV-complete models,” JHEP 01 (2024) 179, arXiv:2309.04523 [hep-ph].
  113. F. del Aguila, J. de Blas, and M. Perez-Victoria, “Electroweak Limits on General New Vector Bosons,” JHEP 09 (2010) 033, arXiv:1005.3998 [hep-ph].
  114. J. de Blas, J. C. Criado, M. Perez-Victoria, and J. Santiago, “Effective description of general extensions of the Standard Model: the complete tree-level dictionary,” JHEP 03 (2018) 109, arXiv:1711.10391 [hep-ph].

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 3 likes.