Papers
Topics
Authors
Recent
Search
2000 character limit reached

Method to Classify Skin Lesions using Dermoscopic images

Published 21 Aug 2020 in eess.IV, cs.CV, and cs.LG | (2008.09418v2)

Abstract: Skin cancer is the most common cancer in the existing world constituting one-third of the cancer cases. Benign skin cancers are not fatal, can be cured with proper medication. But it is not the same as the malignant skin cancers. In the case of malignant melanoma, in its peak stage, the maximum life expectancy is less than or equal to 5 years. But, it can be cured if detected in early stages. Though there are numerous clinical procedures, the accuracy of diagnosis falls between 49% to 81% and is time-consuming. So, dermoscopy has been brought into the picture. It helped in increasing the accuracy of diagnosis but could not demolish the error-prone behaviour. A quick and less error-prone solution is needed to diagnose this majorly growing skin cancer. This project deals with the usage of deep learning in skin lesion classification. In this project, an automated model for skin lesion classification using dermoscopic images has been developed with CNN(Convolution Neural Networks) as a training model. Convolution neural networks are known for capturing features of an image. So, they are preferred in analyzing medical images to find the characteristics that drive the model towards success. Techniques like data augmentation for tackling class imbalance, segmentation for focusing on the region of interest and 10-fold cross-validation to make the model robust have been brought into the picture. This project also includes usage of certain preprocessing techniques like brightening the images using piece-wise linear transformation function, grayscale conversion of the image, resize the image. This project throws a set of valuable insights on how the accuracy of the model hikes with the bringing of new input strategies, preprocessing techniques. The best accuracy this model could achieve is 0.886.

Citations (27)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.