Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 59 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 201 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

On the Complexity of Minimizing Energy Consumption of Partitioning DAG Tasks (2404.01022v3)

Published 1 Apr 2024 in cs.DS and cs.CC

Abstract: We study a graph partition problem where we are given a directed acyclic graph (DAG) whose vertices and arcs can be respectively regarded as tasks and dependencies among tasks. The objective of the problem is to minimize the total energy consumed for completing these tasks by assigning the tasks to k heterogeneous machines. We first show that the problem is NP-hard. Then, we present polynomial-time algorithms for two special cases where there are only two machines and where the input DAG is a directed path. Finally, we study a natural variant where there are only two machines with one of them being capable of executing a limited number of tasks. We show that this special case remains computationally hard.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. A novel technique to optimize quality of service for directed acyclic graph (DAG) scheduling in cloud computing environment using heuristic approach, J. Supercomput. 79 (2023) 1956–1979. doi:10.1007/s11227-022-04729-4.
  2. V. Thost, J. Chen, Directed acyclic graph neural networks, in: ICLR, 2021. https://openreview.net/forum?id=JbuYF437WB6.
  3. Y.-K. Kwok, I. Ahmad, Static scheduling algorithms for allocating directed task graphs to multiprocessors, ACM Comput. Surv. 31 (1999) 406–471. doi:10.1145/344588.344618.
  4. Type-aware federated scheduling for typed DAG tasks on heterogeneous multicore platforms, IEEE Trans. Computers 72 (2023) 1286–1300. doi:10.1109/TC.2022.3202748.
  5. Delay-aware DNN inference throughput maximization in edge computing via jointly exploring partitioning and parallelism, in: IEEE LCN, 2021, pp. 193–200. doi:10.1109/LCN52139.2021.9524928.
  6. Y. Duan, J. Wu, Joint optimization of DNN partition and scheduling for mobile cloud computing, in: ICPP, 2021, pp. 21:1–21:10. doi:10.1145/3472456.3472468.
  7. R. G. Downey, M. R. Fellows, Fixed parameter tractability and completeness, in: Complexity Theory: Current Research, 1992, pp. 191–225.
  8. On size-constrained minimum s𝑠sitalic_s-t𝑡titalic_t cut problems and size-constrained dense subgraph problems, Theor. Comput. Sci. 609 (2016) 434–442. doi:10.1016/j.tcs.2015.10.031.
  9. H. L. Bodlaender, K. Jansen, Restrictions of graph partition problems. Part I, Theor. Comput. Sci. 148 (1995) 93–109. doi:10.1016/0304-3975(95)00057-4.
  10. N. Alon, D. Marx, Sparse balanced partitions and the complexity of subgraph problems, SIAM J. Discret. Math. 25 (2011) 631–644. doi:10.1137/100812653.
  11. On the parameterized complexity of 2-partitions, Theor. Comput. Sci. 844 (2020) 97–105. doi:10.1016/j.tcs.2020.08.008.
  12. Out-degree reducing partitions of digraphs, Theor. Comput. Sci. 719 (2018) 64–72. doi:10.1016/j.tcs.2017.11.007.
  13. Complexity dichotomies for the maximum weighted digraph partition problem, CoRR (2023).
  14. Faster algorithms for vertex partitioning problems parameterized by clique-width, Theor. Comput. Sci. 535 (2014) 16–24. doi:10.1016/j.tcs.2014.03.024.
  15. H. Shachnai, M. Zehavi, Parameterized algorithms for graph partitioning problems, Theory Comput. Syst. 61 (2017) 721–738. doi:10.1007/s00224-016-9706-0.
  16. Min-max graph partitioning and small set expansion, SIAM J. Comput. 43 (2014) 872–904. doi:10.1137/120873996.
  17. Exact solutions to task allocation problems, Manag. Sci. 52 (2006) 1634–1646. doi:10.1287/mnsc.1060.0578.
  18. Task allocation for energy optimization in fog computing networks with latency constraints, IEEE Trans. Commun. 70 (2022) 8229–8243. doi:10.1109/TCOMM.2022.3216645.
  19. Minimizing system cost with efficient task assignment on heterogeneous multicore processors considering time constraint, IEEE Trans. Parallel Distributed Syst. 25 (2014) 2101–2113. doi:10.1109/TPDS.2013.312.
  20. Energy efficiency for clustered heterogeneous multicores, IEEE Trans. Parallel Distributed Syst. 28 (2017) 1315–1330. doi:10.1109/TPDS.2016.2623616.
  21. Dynamic adaptive DNN surgery for inference acceleration on the edge, in: INFOCOM, 2019, pp. 1423–1431. doi:10.1109/INFOCOM.2019.8737614.
  22. Throughput maximization of delay-aware DNN inference in edge computing by exploring DNN model partitioning and inference parallelism, IEEE Trans. Mob. Comput. 22 (2023) 3017–3030. doi:10.1109/TMC.2021.3125949.
  23. Computational complexity and approximability of social welfare optimization in multiagent resource allocation, Auton. Agent Multi-AG. 28 (2014) 256–289. doi:10.1007/s10458-013-9224-2.
  24. Multiagent resource allocation in k𝑘kitalic_k-additive domains: Preference representation and complexity, Ann. Oper. Res. 163 (2008) 49–62. doi:10.1007/s10479-008-0335-0.
  25. Y. Yang, A model of winners allocation, in: AAAI, 2021, pp. 5760–5767.
  26. The complexity of multiterminal cuts, SIAM J. Comput. 23 (1994) 864–894. doi:10.1137/S0097539792225297.
  27. R. M. Karp, Reducibility among combinatorial problems, in: Complexity of Computer Computations, 1972, pp. 85–103. doi:10.1007/978-1-4684-2001-2_9.
  28. L. Cai, Parameterized complexity of cardinality constrained optimization problems, Comput. J. 51 (2008) 102–121. doi:10.1093/comjnl/bxm086.
  29. D. Marx, Parameterized graph separation problems, Theor. Comput. Sci. 351 (2006) 394–406. doi:10.1016/j.tcs.2005.10.007.
  30. L. Mathieson, S. Szeider, The parameterized complexity of regular subgraph problems and generalizations, in: CATS, 2008, pp. 79–86.
  31. J. Hao, J. Orlin, A faster algorithm for finding the minimum cut in a directed graph, Journal of Algorithms 17 (1994) 424–446. doi:https://doi.org/10.1006/jagm.1994.1043.
  32. Approximation algorithm for scheduling a chain of tasks on heterogeneous systems, in: Euro-Par, 2017, pp. 353–365. doi:10.1007/978-3-319-75178-8_29.
  33. K. Jansen, R. Solis-Oba, Approximation schemes for scheduling jobs with chain precedence constraints, Int. J. Found. Comput. Sci. 21 (2010) 27–49. doi:10.1142/S0129054110007118.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.