Numerical evidence for spin chirality emerging from itinerant ferromagnets in bands with Berry curvature (2404.00706v4)
Abstract: The behavior of strongly interacting electrons in bands with Berry curvature is a problem of wide interest. In this paper, we study this problem by numerically studying a fluxed Hubbard-type model on square lattice. Using this model, we demonstrate a metallic ferromagnet in electron bands equipped with Berry curvature can develop non-coplanar spin order in which spin polarization axes at different position span finite solid angles. We find spin chirality can emerge in this setting by doping or adding gauge flux on top of a collinear ferromagnet. This result supports the prediction of spin chirality occurring through an emergent spin orbital interaction. Meanwhile, our result shows that, on top a ferromagnetic background, the spin chirality emerges at a finite threshold value of orbital magnetization, resembling the predicted behavior in theory.
- M. V. Berry, Quantal phase factors accompanying adiabatic changes, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 392, 45 (1984).
- D. Xiao, M.-C. Chang, and Q. Niu, Berry phase effects on electronic properties, Rev. Mod. Phys. 82, 1959 (2010).
- X.-L. Qi and S.-C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83, 1057 (2011).
- M. Z. Hasan and C. L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys. 82, 3045 (2010).
- K. Ohgushi, S. Murakami, and N. Nagaosa, Spin anisotropy and quantum hall effect in the kagomé lattice: Chiral spin state based on a ferromagnet, Phys. Rev. B 62, R6065 (2000).
- R. Shindou and N. Nagaosa, Orbital ferromagnetism and anomalous hall effect in antiferromagnets on the distorted fcc lattice, Phys. Rev. Lett. 87, 116801 (2001).
- N. Nagaosa and Y. Tokura, Emergent electromagnetism in solids, Physica Scripta 2012, 014020 (2012).
- E. Y. Andrei and A. H. MacDonald, Graphene bilayers with a twist, Nature materials 19, 1265 (2020).
- Z. Dong and L. Levitov, Chiral stoner magnetism in dirac bands (2022), arXiv:2208.02051 [cond-mat.mes-hall] .
- Z. Dong, O. Ogunnaike, and L. Levitov, Collective excitations in chiral stoner magnets, Phys. Rev. Lett. 130, 206701 (2023).
- I. Martin and C. D. Batista, Itinerant electron-driven chiral magnetic ordering and spontaneous quantum hall effect in triangular lattice models, Phys. Rev. Lett. 101, 156402 (2008).
- D. Solenov, D. Mozyrsky, and I. Martin, Chirality waves in two-dimensional magnets, Phys. Rev. Lett. 108, 096403 (2012).
- R. Ozawa, S. Hayami, and Y. Motome, Zero-field skyrmions with a high topological number in itinerant magnets, Phys. Rev. Lett. 118, 147205 (2017).
- M. Fishman, S. R. White, and E. M. Stoudenmire, The ITensor Software Library for Tensor Network Calculations, SciPost Phys. Codebases , 4 (2022).
- R. L. Doretto and M. O. Goerbig, Flat-band ferromagnetism and spin waves in topological hubbard models, Phys. Rev. B 92, 245124 (2015).
- Specific calculation processes and detailed results on orbital magnetization are presented in the supplementary materials.
- H. Tasaki, Extension of nagaoka’s theorem on the large-u hubbard model, Phys. Rev. B 40, 9192 (1989).
- Y. Nagaoka, Ferromagnetism in a narrow, almost half-filled s𝑠sitalic_s band, Phys. Rev. 147, 392 (1966).
- A. H. MacDonald, H. A. Fertig, and L. Brey, Skyrmions without sigma models in quantum hall ferromagnets, Phys. Rev. Lett. 76, 2153 (1996).
- Z. Wang and P. Zhang, Orbital magnetization and its effects in spin-chiral ferromagnetic kagomé lattice, Phys. Rev. B 76, 064406 (2007).
- Z. Wang, P. Zhang, and J. Shi, Orbital magnetization and its effect in antiferromagnets on the distorted fcc lattice, Phys. Rev. B 76, 094406 (2007).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.