Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Scaled Brownian motion with random anomalous diffusion exponent (2403.20206v2)

Published 29 Mar 2024 in math.PR, cond-mat.stat-mech, math-ph, and math.MP

Abstract: The scaled Brownian motion (SBM) is regarded as one of the paradigmatic random processes, featuring the anomalous diffusion property characterized by the diffusion exponent. It is a Gaussian, self-similar process with independent increments, which has found applications across various fields, from turbulence and stochastic hydrology to biophysics. In our paper, inspired by recent single particle tracking biological experiments, we introduce a process termed the scaled Brownian motion with random exponent (SBMRE), which preserves SBM characteristics at the level of individual trajectories, albeit with randomly varying anomalous diffusion exponents across the trajectories. We discuss the main probabilistic properties of SBMRE, including its probability density function (pdf), and the q-th absolute moment. Additionally, we present the expected value of the time-averaged mean squared displacement (TAMSD) and the ergodicity breaking parameter. Furthermore, we analyze the pdf of the first hitting time in a semi-infinite domain, the martingale property of SBMRE, and its stochastic exponential. As special cases, we consider two distributions of the anomalous diffusion exponent, namely the two-point and beta distributions, and discuss the asymptotics of the presented characteristics in such cases. Theoretical results for SBMRE are validated through numerical simulations and compared with the corresponding characteristics for SBM.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (78)
  1. J. P. Bouchaud and A. Georges. Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications. Physics Reports, 195(4–5):127–293, November 1990.
  2. R. M. Mazo. Brownian Motion. Oxford University Press, October 2008.
  3. R. L. Schilling and L. Partzsch. Brownian Motion: An Introduction to Stochastic Processes. DE GRUYTER, May 2012.
  4. A. N. Kolmogorov. Wienersche Spiralen und einige andere interessante Kurven in Hilbertscen Raum. C.R. (Doklady) Acad. Sci. URSS (NS), 26:115, 1940.
  5. Fractional Brownian motions, fractional noises and applications. SIAM review, 10(4):422–437, 1968.
  6. J. Beran. Statistics for long-memory processes. Chapman & Chal, 1994.
  7. Fractional Brownian motion and fractional Gaussian noise in subsurface hydrology: A review, presentation of fundamental properties, and extensions. Water Resources Research, 33(10):2273–2286, 1997.
  8. Fractional calculus in hydrologic modeling: A numerical perspective. Advances in Water Resources, 51:479–497, 2013.
  9. A. Pashko. Simulation of telecommunication traffic using statistical models of fractional Brownian motion. In 2017 4th International Scientific-Practical Conference Problems of Infocommunications. Science and Technology (PIC S&T), pages 414–418, 2017.
  10. Non-Linear Wavelet Regression and Branch & Bound Optimization for the Full Identification of Bivariate Operator Fractional Brownian Motion. IEEE Transactions on Signal Processing, 64(15):4040–4049, 2016.
  11. Y. Chang and S. Chang. A fast estimation algorithm on the Hurst parameter of discrete-time fractional Brownian motion. IEEE Transactions on Signal Processing, 50(3):554–559, 2002.
  12. S. Liu and S. Chang. Dimension estimation of discrete-time fractional Brownian motion with applications to image texture classification. IEEE Transactions on Image Processing, 6(8):1176–1184, 1997.
  13. Z. Gelbaum and M. Titus. Simulation of Fractional Brownian Surfaces via Spectral Synthesis on Manifolds. IEEE Transactions on Image Processing, 23(10):4383–4388, 2014.
  14. S. Rostek and R. Schöbel. A note on the use of fractional Brownian motion for financial modeling. Economic Modelling, 30:30–35, 2013.
  15. Time-averaged mean squared displacement ratio test for Gaussian processes with unknown diffusion coefficient. Chaos: An Interdisciplinary Journal of Nonlinear Science, 31(7):073120, 2021.
  16. Pricing currency options in a fractional Brownian motion with jumps. Economic Modelling, 27(5):935–942, 2010.
  17. Fractional Brownian motion in crowded fluids. Soft Matter, 8:4886, 2012.
  18. F. Höfling and T. Franosch. Anomalous transport in the crowded world of biological cells. Rep. Prog. Phys., 76:046602, 2013.
  19. Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. Phys. Chem. Chem. Phys., 16(44):24128–24164, 2014.
  20. Statistical test for anomalous diffusion based on empirical anomaly measure for Gaussian processes. Computational Statistics & Data Analysis, 168:107401, 2022.
  21. Spectral Content of a Single Non-Brownian Trajectory. Phys. Rev. X, 9:011019, 2019.
  22. G. K. Batchelor. Diffusion in a field of homogeneous turbulence: II. The relative motion of particles. Mathematical Proceedings of the Cambridge Philosophical Society, 48(2):345–362, 1952.
  23. Self-similar Gaussian processes for modeling anomalous diffusion. Physical Review E, 66(2):021114, 2002.
  24. On the supremum from Gaussian processes over infinite horizon. Probability and Mathematical Statistics, 18:83, 1998.
  25. K. Debicki. Asymptotics of the supremum of scaled Brownian motion. Probability and Mathematical Statistics, 21, 2001.
  26. M. Magdziarz. Lamperti transformation of scaled Brownian motion and related Langevin equations. Communications in Nonlinear Science and Numerical Simulation, 83:105077, 2020.
  27. F. Thiel and I. M. Sokolov. Scaled Brownian motion as a mean-field model for continuous-time random walks. Physical Review E, 89(1):012115, 2014.
  28. Scaled Brownian motion: a paradoxical process with a time dependent diffusivity for the description of anomalous diffusion. Phys. Chem. Chem. Phys., 16(30):15811–15817, 2014.
  29. Quantifying the non-ergodicity of scaled Brownian motion. Journal of Physics A: Mathematical and Theoretical, 48(37):375002, 2015.
  30. Single-trajectory spectral analysis of scaled Brownian motion. New Journal of Physics, 21(7):073043, 2019.
  31. Quantifying non-ergodic dynamics of force-free granular gases. Physical Chemistry Chemical Physics, 17(34):21791–21798, 2015.
  32. Underdamped scaled Brownian motion: (non-)existence of the overdamped limit in anomalous diffusion. Scientific Reports, 6(1), 2016.
  33. Scaled Brownian motion with renewal resetting. Physical Review E, 100(1):012120, 2019.
  34. Nonrenewal resetting of scaled Brownian motion. Physical Review E, 100(1):012119, 2019.
  35. Survival Probability Dynamics of Scaled Brownian Motion: Effect of Nonstationary Property. Bulletin of the Korean Chemical Society, 40(9):847–850, 2019.
  36. Anomalous diffusion, non-Gaussianity, nonergodicity, and confinement in stochastic-scaled Brownian motion with diffusing diffusivity dynamics. Physical Review E, 109(1):014139, 2024.
  37. Anomalous non-gaussian diffusion of scaled brownian motion in a quenched disorder environment. Journal of Physics A: Mathematical and Theoretical, 57(11):115002, March 2024.
  38. Scaled geometric Brownian motion features sub- or superexponential ensemble-averaged, but linear time-averaged mean-squared displacements. Physical Review E, 103(6):062127, June 2021.
  39. A. Valdés Gómez and F. J. Sevilla. Fractional and scaled Brownian motion on the sphere: The effects of long-time correlations on navigation strategies. Physical Review E, 108(5):054117, 2023.
  40. First passage time statistics of Brownian motion with purely time dependent drift and diffusion. Physica A: Statistical Mechanics and its Applications, 390(11):1841–1852, 2011.
  41. Nonstationary increments, scaling distributions, and variable diffusion processes in financial markets. Proceedings of the National Academy of Sciences, 104(44):17287–17290, 2007.
  42. Revealing mesoscopic structural universality with diffusion. Proceedings of the National Academy of Sciences, 111(14):5088–5093, 2014.
  43. Bayesian inference of scaled versus fractional Brownian motion. Journal of Physics A: Mathematical and Theoretical, 55(19):194003, 2022.
  44. Discriminating between scaled and fractional Brownian motion via p-variation statistics. International Journal of Advances in Engineering Sciences and Applied Mathematics, 10(1):9–14, 2018.
  45. Discriminating Gaussian processes via quadratic form statistics. Chaos: An Interdisciplinary Journal of Nonlinear Science, 31(6), 2021.
  46. A. A. Sadoon and Y. Wang. Anomalous, non-Gaussian, viscoelastic, and age-dependent dynamics of histonelike nucleoid-structuring proteins in live escherichia coli. Physical Review E, 98:042411, 2018.
  47. R. Benelli and M. Weiss. From sub-to superdiffusion: Fractional Brownian motion of membraneless organelles in early C. elegans embryos. New Journal of Physics, 23:063072, 2021.
  48. K. Speckner and M. Weiss. Single-particle tracking reveals anti-persistent subdiffusion in cell extracts. Entropy, 23(7):892, 2021.
  49. Non-Gaussian, non-ergodic, and non-Fickian diffusion of tracers in mucin hydrogels. Soft Matter, 15(12):2526–2551, 2019.
  50. C. Beck and E. G. Cohen. Superstatistics. Physica A: Statistical mechanics and its applications, 322:267–275, 2003.
  51. C. Beck. Superstatistical Brownian motion. Progress of Theoretical Physics Supplement, 162:29–36, 2005.
  52. Diffusing Diffusivity: A Model for Anomalous, yet Brownian, Diffusion. Physical Review Letters, 113(9):098302, August 2014.
  53. R. Metzler and A. V. Chechkin. Non-Gaussian stochastic transport. In B. J. West and S. Bianco, editors, Paolo Grigolini and 50 Years of Statistical Physics., pages 71–93. Cambridge Scholars Publishing, 2023.
  54. J. Lévy-Véhel and R. F. Peltier. Multifractional Brownian motion: definition and preliminary results. Rapport de recherche de l’INRIA, 2645, 1995.
  55. A. Ayache and M. S. Taqqu. Multifractional processes with random exponent. Publicacions Matemàtiques, 49(2):459, 2005.
  56. Fractional Brownian motion with random Hurst exponent: Accelerating diffusion and persistence transitions. Chaos: An Interdisciplinary Journal of Nonlinear Science, 32(9):093114, 2022.
  57. Deciphering anomalous heterogeneous intracellular transport with neural networks. ELife, 9:e52224, 2020.
  58. Local analysis of heterogeneous intracellular transport: Slow and fast moving endosomes. Entropy, 23(8):958, 2021.
  59. Modelling intermittent anomalous diffusion with switching fractional Brownian motion. New Journal of Physics, 25(10):103031, 2023.
  60. Memory-multi-fractional Brownian motion with continuous correlations. Phys. Rev. Res., 5:L032025, 2023.
  61. Superstatistical approach of the anomalous exponent for scaled Brownian motion. Chaos, Solitons & Fractals, 164:112740, 2022.
  62. Principles of statistical radiophysics 1. Springer-Verlag New York Inc, United States, 1987.
  63. Random Time-Scale Invariant Diffusion and Transport Coefficients. Physical Review Letters, 101(5):058101, 2008.
  64. B. Øksendal. Stochastic Differential Equations. Springer Berlin Heidelberg, 2003.
  65. N.G. de Bruijn. Asymptotic Methods in Analysis. Bibliotheca mathematica. Dover Publications, 1981.
  66. J. Penot. Analysis. Springer International Publishing, 2016.
  67. A Course in Probability. Pearson Addison Wesley, 2005.
  68. M. Magdziarz. Path properties of subdiffusion—a martingale approach. Stochastic Models, 26(2):256–271, 2010.
  69. D. Revuz and M. Yor. Continuous Martingales and Brownian Motion. Springer Berlin Heidelberg, 1999.
  70. Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations. Physical Review E, 66(4):046129, October 2002.
  71. Generalized fractional diffusion equations for accelerating subdiffusion and truncated lévy flights. Physical Review E, 78(2):021111, August 2008.
  72. Natural and Modified Forms of Distributed-Order Fractional Diffusion Equations, pages 107–127. WORLD SCIENTIFIC, October 2011.
  73. R. Beals and R. Wong. Special Functions: A Graduate Text. Cambridge University Press, 2010.
  74. M. Arutkin and S. Reuveni. Doubly stochastic continuous time random walk. Phys. Rev. Res., 6:L012033, 2024.
  75. Lévy-walk-like Langevin dynamics with random parameters. Chaos: An Interdisciplinary Journal of Nonlinear Science, 34(1):013109, 01 2024.
  76. Objective comparison of methods to decode anomalous diffusion. Nature Communications, 12:6253, 2021.
  77. Emergent clustering due to quorum sensing interactions in active matter. New Journal of Physics, 26(2):023010.
  78. Bayesian model selection with fractional brownian motion. Journal of Statistical Mechanics: Theory and Experiment, 2018(9):093501, September 2018.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.