Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Single-trajectory spectral analysis of scaled Brownian motion (1903.06673v1)

Published 15 Mar 2019 in cond-mat.stat-mech and physics.bio-ph

Abstract: A standard approach to study time-dependent stochastic processes is the power spectral density (PSD), an ensemble-averaged property defined as the Fourier transform of the autocorrelation function of the process in the asymptotic limit of long observation times, $T\to\infty$. In many experimental situations one is able to garner only relatively few stochastic time series of finite $T$, such that practically neither an ensemble average nor the asymptotic limit $T\to\infty$ can be achieved. To accommodate for a meaningful analysis of such finite-length data we here develop the framework of single-trajectory spectral analysis for one of the standard models of anomalous diffusion, scaled Brownian motion. We demonstrate that the frequency dependence of the single-trajectory PSD is exactly the same as for standard Brownian motion, which may lead one to the erroneous conclusion that the observed motion is normal-diffusive. However, a distinctive feature is shown to be provided by the explicit dependence on the measurement time $T$, and this ageing phenomenon can be used to deduce the anomalous diffusion exponent. We also compare our results to the single-trajectory PSD behaviour of another standard anomalous diffusion process, fractional Brownian motion, and work out the commonalities and differences. Our results represent an important step in establishing single-trajectory PSDs as an alternative (or complement) to analyses based on the time-averaged mean squared displacement.

Summary

We haven't generated a summary for this paper yet.